GHANA EDUCATION SERVICE
 (MINISTRY OF EDUCATION)

REPUBLIC OF GHANA

MATHEMATICS CURRICULUM FOR PRIMARY SCHOOLS

(BASIC I - 3)

SEPTEMBER 2019

Mathematics Curriculum for Primary Schools

Enquiries and comments on this Curriculum should be addressed to:
The Executive Secretary
National Council for Curriculum and Assessment (NaCCA)
Ministry of Education
P. O. Box CT PM 77

Cantonments
Accra
Telephone: 030290907I, 0302909862
Email:
info@nacca.gov.gh
Website: www.nacca.gov.gh
© 2019 National Council for Curriculum and Assessment (NaCCA). This publication is not for sale. All rights reserved. No part of this publication may be reproduced without prior written permission of the Ministry of Education, Ghana.

Ministry of Education Ghana

FOREWORD

The new curriculum for Ghana's primary schools is standards-based, which is our demonstration of placing learning at the heart of every classroom and ensuring that every learner receives quality education. Provision of accessible quality education for all is non-negotiable if we are to meet the human capital needs of our country, required for accelerated sustainable national development. It is for this reason that the new curriculum sets out clearly the learning areas that need to be taught, how they should be taught and how they should be assessed. It provides a set of core competencies and standards that learners are to know, understand and demonstrate as they progress through the curriculum from one content standard to the other and from one phase to the next. The curriculum and its related teachers' manual promote the use of inclusive and gender responsive pedagogy within the context of learning-centred teaching methods so that every learner can participate in every learning process and enjoy learning. The curriculum encourages the use of Information and Communication Technologies (ICTs) for teaching and learning - ICTs as teaching and learning materials.

The new curriculum has at its heart the acquisition of skills in the 4Rs of Reading, wRiting, aRithmetic and cReativity by all learners. It is expected that at any point of exit from a formal education, all learners should be equipped with these foundational skills for life, which are also prerequisites for Ghana becoming a learning nation. The graduates from the school system should become functional citizens in the 4Rs and lifelong learners. They should be digital literates, critical thinkers and problem solvers. The education they receive through the study of the learning areas in the curriculum should enable them to collaborate and communicate well with others and be innovative. The graduates from Ghana's schools should be leaders with a high sense of national and global identity. The curriculum therefore provides a good opportunity in its design to develop individuals with the right skills and attitudes to lead the transformation of Ghana into an industrialised learning nation.

For this reason, the Ministry of Education expects that learners, as a result of the new knowledge, skills and values they have acquired through the new curriculum, will show a new sense of identity as creative, honest and responsible citizens. These are our core values that underpin the identification and selection of the learning areas for this curriculum. These core values serve as fundamental building blocks for developing into our learners the spirit of teamwork, respect, resilience and the commitment to achieving excellence. The Ministry endorses a quality learning experience as an entitlement for each of Ghana's school-going girl and boy; the curriculum has rightly focused on learning and learning progression. The Ministry has also endorsed accountability as a critical domain for effective workings of standards-based curriculum.

More importantly the role of the teacher is to make this curriculum work for the intended purpose - to inculcate in learners the core competencies and values and to make learning happen; improve learning outcomes - and the support that teachers need is duly recognised and endorsed by my Ministry. The Ministry will support the implementation of the curriculum to include capacity development of all teachers in the new curriculum. Teachers matter in the development and delivery of the standardsbased curriculum and we will continue to support our teachers on this journey that we have started together to put learning at the centre of what we do best; teach!

I thank all those who have contributed their time and expertise to the development of this curriculum for primary schools in Ghana.

Dr. Matthew Opoku Prempeh (MP)
The Honourable Minister of Education

TABLE OF CONTENTS

FOREWORDPHILOSOPHYv
GENERAL AIMS v
CORE COMPETENCIES vi
VALUES: xi
ORGANISATION AND STRUCTURE OF THE CURRICULUM xvi
BASIC I. 2
STRAND I: NUMBER 2
STRAND 2: ALGEBRA 14
STRAND 3: GEOMETRY AND MEASUREMENT 15
STRAND 4: DATA. 18
BASIC 2. 20
STRAND I: NUMBER 20
STRAND 2: ALGEBRA 32
STRAND 3: GEOMETRY AND MEASUREMENT 33
STRAND 4: DATA 40
BASIC 3. 42
STRAND I: NUMBER 42
STRAND 2: ALGEBRA 63
STRAND 3: GEOMETRY AND MEASUREMENT64
STRAND 4: DATA 73
MATHEMATICS SUBJECT PANEL MEMBERS AND REVIEWERS 74

RATIONALE FOR PRIMARY MATHEMATICS

Mathematics forms an integral part of our everyday lives. It is a universal truth that development is hinged on Mathematics. It is the backbone of social, economic, political and physical development of a country. It is a never-ending creative process which serves to promote discovery and understanding. It consists of a body of knowledge which attempts to explain and interpret phenomena and experiences. Mathematics has changed our lives, and is vital to Ghana's future development.

To provide quality Mathematics education, teachers must facilitate learning in the Mathematics classroom. This will provide the foundations for discovering and understanding the world around us and lay the grounds for Mathematics and Mathematics related studies at higher levels of education. Learners should be encouraged to understand how Mathematics can be used to explain what is occurring, predict how things will behave and analyse causes and origins of things in our environment. The Mathematics curriculum has considered the desired outcomes of education for learners at the basic level. Mathematics is also concerned with the development of attitudes and is important for all citizens to be mathematically and technologically literate for sustainable development. Mathematics therefore ought to be taught using hands-on and minds-on approaches which learners will find as fun and adopt as a culture.

PHILOSOPHY

- Teaching Philosophy

Ghana believes that an effective Mathematics education needed for sustainable development should be inquiry-based. Thus Mathematics education must provide learners with opportunities to expand, change, enhance and modify the ways in which they view the world. It should be pivoted on learner-centred Mathematics teaching and learning approaches that engage learners physically and cognitively in the knowledge-acquiring process in a rich and rigorous inquiry-driven environment.

- Learning Philosophy

Mathematics learning is an active contextualised process of constructing knowledge based on learners' experiences rather than acquiring it. Learners are information constructors who operate as researchers. Teachers serve as facilitators by providing the enabling environment that promotes the construction of learners' own knowledge based on their previous experiences. This makes learning more relevant to learners and leads to the development of critical thinkers and problem solvers.

GENERAL AIMS

The curriculum is aimed at developing individuals to become mathematically literate, good problem solvers who are capable to think creatively and have both the confidence and competence to participate fully in the Ghanaian society as responsible local and global citizens.

SUBJECT AIMS

The Mathematics curriculum is designed to help learners to:
I. recognise that Mathematics permeates the world around us;
2. appreciate the usefulness, power and beauty of Mathematics;
3. enjoy Mathematics and develop patience and persistence when solving problems;
4. understand and be able to use the language, symbols and notation of Mathematics;
5. develop mathematical curiosity and use inductive and deductive reasoning when solving problems;
6. become confident in using Mathematics to analyse and solve problems both in school and in real-life situations;
7. develop the knowledge, skills and attitudes necessary to pursue further studies in Mathematics; and
8. develop abstract, logical and critical thinking and the ability to reflect critically upon their work and the work of others.

INSTRUCTIONAL EXPECTATIONS

I. Guide and facilitate learning by generating discourse among learners and challenging them to accept and share responsibility for their own learning, based on their unique individual differences.
2. Select Mathematics content, adapt and plan lessons to meet the interests, knowledge, understanding, abilities, and experiences of learners.
3. Work together as colleagues within and across disciplines and grade levels to develop communities of Mathematics learners who exhibit the skills of mathematical inquiry and the attitudes and social values conducive to mathematics learning.
4. Use multiple methods and systematically gather data about learner understanding and ability to guide Mathematics teaching and learning with arrangements to provide feedback to both learners and parents.
5. Design and manage learning environments that provide learners with the time, space and resources needed for learning Mathematics.

CORE COMPETENCIES

The core competencies for Mathematics describe a body of skills that teachers in Mathematics at all levels should seek to develop in their learners. They are ways in which teachers and learners in Mathematics engage with the subject matter as they learn the subject. The competencies presented here describe a connected body of core skills that are acquired throughout the processes of teaching and learning.

CRITICAL THINKING AND PROBLEM SOLVING (CP)

This skill develops learners' cognitive and reasoning abilities to enable them analyse and solve problems. Critical thinking and problem solving skill enables learners to draw on their own experiences to analyse situations and choose the most appropriate out of a number of possible solutions. It requires that learners embrace the problem at hand, persevere and take responsibility for their own learning.

CREATIVITY AND INNOVATION (CI)

Creativity and Innovation promotes entrepreneurial skills in learners through their ability to think of new ways of solving problems and developing technologies for addressing the problem at hand. It requires ingenuity of ideas, arts, technology and enterprise. Learners having this skill are also able to think independently and creatively.

COMMUNICATION AND COLLABORATION (CC)

This competence promotes in learners the skills to make use of languages, symbols and texts to exchange information about themselves and their life experiences. Learners actively participate in sharing their ideas. They engage in dialogue with others by listening to and learning from them. They also respect and value the views of others.

CULTURAL IDENTITY AND GLOBAL CITIZENSHIP (CG)

This competence involves developing learners to put country and service foremost through an understanding of what it means to be active citizens. This is done by inculcating in learners a strong sense of social and economic awareness. Learners make use of the knowledge, skills, competencies and attitudes acquired to contribute effectively towards the socio-economic development of the country and on the global stage. Learners build skills to critically identify and analyse cultural and global trends that enable them to contribute to the global community.

PERSONAL DEVELOPMENT AND LEADERSHIP (PL)

This competence involves improving self-awareness and building self-esteem. It also entails identifying and developing talents, fulfilling dreams and aspirations. Learners are able to learn from mistakes and failures of the past. They acquire skills to develop other people to meet their needs. It involves recognising the importance of values such as honesty and empathy and seeking the well-being of others. Personal development and leadership enable learners to distinguish between right and wrong. The skill helps them to foster perseverance, resilience and self-confidence. PL helps them acquire the skill of leadership, self-regulation and responsibility necessary for lifelong learning.

DIGITAL LITERACY (DL)

Digital Literacy develops learners to discover, acquire and communicate through ICT to support their learning. It also makes them use digital media responsibly

LEARNING DOMAINS (EXPECTED LEARNING BEHAVIOURS)

A central aspect of this curriculum is the concept of three integral learning domains that should be the basis for instruction and assessment. These are:

- Knowledge, Understanding and Application
- Process Skills
- Attitudes and Values

KNOWLEDGE, UNDERSTANDING AND APPLICATION

Under this domain, learners may acquire some knowledge through some learning experiences. They may also show understanding of concepts by comparing, summarising, re-writing etc. in their own words and constructing meaning from instruction. The learner may also apply the knowledge acquired in some new contexts. At a higher level of learning behaviour, the learner may be required to analyse an issue or a problem. At a much higher level, the learner may be required to synthesise knowledge by integrating a number of ideas to formulate a plan, solve a problem, compose a story, or a piece of music. Further, learners may be required to evaluate, estimate and interpret a concept. At the last level, which is the highest, learners may be required to create, invent, compose, design and construct. These learning behaviours "knowing ", "understanding", "applying", "analysing", "synthesising", "evaluating" and "creating" fall under the domain "Knowledge, Understanding and Application".

In this curriculum, learning indicators are stated with action verbs to show what the learner should know and be able to do. For example, the learner will be able to describe something. Being able to "describe" something after teaching and learning has been completed means that the learner has acquired "knowledge". Being able to explain, summarise and give examples etc. means that the learner has understood the concept taught.

Similarly, being able to develop, defend, etc. means that the learner can "apply" the knowledge acquired in some new context. You will note that each of the indicators in the curriculum contains an "action verb" that describes the behaviour the learner will be able to demonstrate after teaching and learning has taken place. "Knowledge,

Understanding and Application" is a domain that should be the prime focus of teaching and learning in schools. Teaching in most cases has tended to stress knowledge acquisition to the detriment of other higher level behaviours such as applying knowledge.

Each action verb in any indicator outlines the underlying expected outcome. Each indicator must be read carefully to know the learning domain towards which you have to teach. The focus is to move teaching and learning from the didactic acquisition of "knowledge" where there is fact memorisation, heavy reliance on formulae, remembering facts without critiquing them or relating them to real world - surface learning - to a new position called - deep learning. Learners are expected to deepen their learning by knowledge application to develop critical thinking skills, explain reasoning, and generate creative ideas to solve real life problems in their school lives and later in their adult lives. This is the position where learning becomes beneficial to the learner.

The explanation and the key words involved in the "Knowledge, Understanding and Application" domain are as follows:
Knowing: This refers to the ability to remember, recall, identify, define, describe, list, name, match, state principles, facts, concepts. Knowledge is the ability to remember or recall material already learned. This constitutes the lowest level of learning.

Understanding: This refers to the ability to explain, summarise, translate, rewrite, paraphrase, give examples, generalise, estimate or predict consequences based upon a trend. Understanding is generally the ability to grasp the meaning of some material that may be verbal, pictorial or symbolic.

Applying: This dimension is also referred to as "Use of Knowledge". It is the ability to use knowledge or apply knowledge, apply rules, methods, principles, theories, etc. to situations that are new and unfamiliar. It also involves the ability to produce, solve, plan, demonstrate, discover etc.

Analysis: This dimension is the ability to break down material/information into its component parts; to differentiate, compare, distinguish, outline, separate, identify significant points etc., ability to recognise unstated assumptions and logical fallacies; and the ability to recognise inferences from facts etc.

Synthesising: It is the ability to put parts together to form a new whole. It involves the ability to combine, compile, compose, devise, plan, revise, organise, create, generate new ideas and solutions etc.

Evaluating: This refers to the ability to appraise, compare features of different things and make comments or judgment, compare, contrast, criticise, justify, support, discuss, conclude, make recommendations etc. Evaluating refers to the ability to judge the worth or value of some material based on some criteria.

Creating: This is the ability to use information or materials to plan, compose, produce, manufacture or construct other products. From the foregoing, creation is the highest form of thinking and learning, and is therefore the most important behaviour. This unfortunately is the area where most learners perform poorly. In order to get learners to develop critical thinking and behavioural skills beginning right from the lower primary level, it is advised that you do your best to help your learners to develop analytic and application skills as we have said already.

SKILLS AND PROCESSES

The mathematical method is the means by which a mathematician solves problems or seeks to gain information about events. Learners should be exposed to situations that challenge them to raise questions and attempt to solve problems. The more often they are faced with these challenges, the more likely they are to develop a positive attitude toward mathematics, and the more likely they are to develop the relevant process skills. Details of each sub-skill in the "Values, Attitudes and Process Skills" dimension are as follows:

Observing:	This is the skill of using our senses to gather information about objects or events. This also includes the use of instruments to extend the range of our senses.
Classifying:	This is the skill of grouping objects or events based on common characteristics.
Comparing:	This is the skill of identifying the similarities and differences between two or more objects, concepts or processes.
Communicating/: Reporting	This is the skill of transmitting, receiving and presenting information in concise, clear and accurate forms - verbal, written, pictorial, tabular or graphical.
Predicting:	This is the skill of assessing the likelihood of an outcome based on prior knowledge of how things usually turn out.
Analysing:	This is the skill of identifying the parts of objects, information or processes and the patterns and relationships between these parts.
Generating: possibilities	This is the skill of exploring all the options, possibilities and alternatives beyond the obvious or preferred one.
Evaluating :	This is the skill of assessing the reasonableness, accuracy and quality of information, processes or ideas. It also involves assessing the quality and feasibility of objects.
Designing:	This is the skill of visualizing and drawing new objects or gargets from imagination
Measuring:	This is the skill of using measuring instruments and equipment for measuring, reading and making observations
Interpreting:	This is the skill of evaluating data in terms of its worth: good, bad, reliable, unreliable; making inferences and predictions from written or graphical data; extrapolating and deriving conclusions. Interpretation is also referred to as "Information Handling".
Recording:	This is the skill of drawing or making graphical representation boldly and clearly, well labelled and pertinent to the issue at hand.

Abstract

Generalising: This is the skill of being able to use the conclusions arrived at in an experiment to what could happen in similar situations. Designing of: Experiments This is the skill of developing hypotheses; planning and designing of experiments; persisting in the execution of experimental activities and

Learners therefore need to acquire positive attitudes, values and psychosocial skills that will enable them to participate actively in lessons and take a stand on issues affecting them and others.

ATTITUDES

To be effective, competent and reflective citizens, who will be willing and capable of solving personal and societal problems, learners should be exposed to situations that challenge them to raise questions and attempt to solve problems. Learners therefore need to acquire positive attitudes, values and psychosocial skills that will enable them to participate in debates and take a stand on issues affecting them and others. The Mathematics curriculum thus focuses on the development of attitudes and values. The Mathematics curriculum aims at helping learners to acquire the following:
(i) Commitment: determination to contribute to national development.
(ii) Tolerance: willingness to respect the views of others.
(iii) Patriotism: readiness to defend the nation.
(iv) Flexibility in ideas: willingness to change opinion in the face of more plausible evidence.
(v) Respect for evidence: willingness to collect and use data on one's investigation, and also have respect for data collected by others.
(vi) Reflection: the habit of critically reviewing ways in which an investigation or observation has been carried out to see possible faults and other ways in which the investigation or observation can be improved upon.
(vii) Comportment: conforming to acceptable societal norms.
(viii) Co-operation: the ability to work effectively with others.
(ix) Responsibility: the ability to act independently and make decisions; morally accountable for one's action; capable of rational conduct.
(x) Environmental Awareness: being conscious of one's physical and socio-economic surroundings.
(xi) Respect for the Rule of Law: obeying the rules and regulations of the land.

The teacher should ensure that learners cultivate the above attitudes and skills as basis for living in the nation as effective citizens.

VALUES

At the heart of this curriculum is the belief in nurturing honest, creative and responsible citizens. As such, every part of this curriculum, including the related pedagogy should be consistent with the following set of values.

Respect: This includes respect for the nation of Ghana, its institutions and laws and the culture and respect among its citizens and friends of Ghana.

Diversity: Ghana is a multicultural society in which every citizen enjoys fundamental rights and responsibilities. Learners must be taught to respect the views of all persons and to see national diversity as a powerful force for national development. The curriculum promotes social cohesion.

Equity: The socio-economic development across the country is uneven. Consequently, it is necessary to ensure an equitable distribution of resources based on the unique needs of learners and schools. Ghana's learners are from diverse backgrounds, which require the provision of equal opportunities to all, and that all strive to care for one another both personally and professionally.

Commitment to achieving excellence: Learners must be taught to appreciate the opportunities provided through the curriculum and persist in doing their best in whatever field of endeavour as global citizens. The curriculum encourages innovativeness through creative and critical thinking and the use of contemporary technology.

Teamwork/Collaboration: Learners are encouraged to be become committed to team-oriented working and learning environments. This also means that learners should have an attitude of tolerance to be able to live peacefully with all persons.

Truth and Integrity: The curriculum aims to develop learners into individuals who will consistently tell the truth irrespective of the consequences. In addition, it aims to make learners become morally upright with the attitude of doing the right thing even when no one is watching, be true to themselves and be willing to live the values of honesty and compassion. Equally important, the ethos or culture of the work place, including integrity and perseverance, must underpin the learning processes to allow learners to apply skills and competencies in the world of work

The action verbs provided under the various profile dimensions should help you to structure your teaching to achieve desired learning outcomes. Select from the action verbs provided for your teaching, for evaluation exercises and for test construction. Check the weights of the profile dimensions to ensure that you have given the required emphasis to each of the dimensions in your teaching and assessment

ASSESSMENT

Assessment is a process of collecting and evaluating information about learners and using the information to make decisions to improve their learning.
In this curriculum, it is suggested that assessment is used to promote learning. Its purpose is to identify the strengths and weaknesses of learners to enable teachers to ascertain their learner's response to instruction

Assessment is both formative and summative. Formative assessment is viewed in terms of assessment as learning and assessment for learning.
Assessment as learning: Assessment as learning relates to engaging learners to reflect on the expectations of their learning. Information that learners provide the teacher forms the basis for refining teaching-learning strategies. Learners are assisted to play their roles and to take responsibility of their own learning to improve performance. Learners set their own goals and monitor their progress.

Assessment for learning: It is an approach used to monitor learner's progress and achievement. This occurs throughout the learning process.
The teacher employs assessment for learning to seek and interpret evidence which serves as timely feedback to refine their teaching strategies and improve learners' performance. Learners become actively involved in the learning process and gain confidence in what they are expected to learn.

Assessment of learning: This is summative assessment. It describes the level learners have attained in the learning, what they know and can do over a period of time. The emphasis is to evaluate the learner's cumulative progress and achievement.

It must be emphasised that all forms of assessment should be based on the domains of learning. In developing assessment procedures, try to select indicators in such a way that you will be able to assess a representative sample from a given strand. Each indicator in the curriculum is considered a criterion to be achieved by the learners. When you develop assessment items or questions that are based on a representative sample of the indicators taught, the assessment is referred to as a "Criterion-Referenced Assessment". In many cases, a teacher cannot assess all the indicators taught in a term or year. The assessment procedure you use i.e. class assessments, homework, projects etc. must be developed in such a way that the various procedures complement one another to provide a representative sample of indicators taught over a period.

SUGGESTED TIME ALLOCATION

A total of ten periods a week, each period consisting of thirty minutes, is allocated to the teaching of Mathematics at the Lower Primary level. It is recommended that the teaching periods be divided as follows:
2 periods per day (two 30-minute periods)

PEDAGOGICAL APPROACHES

These include the approaches, methods, strategies and appropriate relevant teaching and learning resources for ensuring that every learner benefits from the teaching and learning process. The curriculum emphasises the:
creation of learning-centred classrooms through the use of creative approaches to ensure learner empowerment and independent learning;
positioning of inclusion and equity at the centre of quality teaching and learning;
use of differentiation and scaffolding as teaching and learning strategies for ensuring that no learner is left behind;
use of Information Communications Technology (ICT) as a pedagogical tool;
identification of subject specific instructional expectations needed for making learning in the subject relevant to learners;
integration of assessment as learning, for learning and of learning into the teaching and learning processes and as an accountability strategy; and questioning techniques that promote deep learning.

LEARNING-CENTRED PEDAGOGY

The learner is at the centre of learning. At the heart of the national curriculum for change and sustainable development is the learning progression and improvement of learning outcomes for Ghana's young people with a focus on the 4Rs - Reading, wRiting, aRithmetic and cReativity. It is expected that at each curriculum phase, learners would be offered the essential learning experiences to progress seamlessly to the next phase. Where there are indications that a learner is not sufficiently ready for the next phase a compensatory provision through differentiation should be provided to ensure that such a learner is ready to progress with his/her cohort. At the primary school, the progression phases are KGI to KG2 and BI to B .

The Curriculum encourages the creation of a learning-centred classroom with the opportunity for learners to engage in meaningful "hands-on" activities that bring home to the learner what they are learning in school and what they know from outside of school. The learning-centred classroom is a place for the learners to discuss ideas through the inspiration of the teacher. The learners, then, become actively engaged in looking for answers, working in groups to solve problems. They also research for information, analyse and evaluate information. The aim of the learning-centred classroom is to enable learners take ownership of their learning. It provides the opportunity for deep and profound learning to take place.

The teacher as a facilitator needs to create a learning environment that:

1. makes learners feel safe and accepted;
2. helps learners to interact with varied sources of information in a variety of ways;
3. helps learners to identify a problem suitable for investigation through project work
4. connects the problem with the context of the learners' world so that it presents realistic opportunities for learning;
5. organises the subject matter around the problem, not the subject;
6. gives learners responsibility for defining their learning experience and planning to solve the problem;
7. encourages learners to collaborate in learning; and
8. expects all learners to demonstrate the results of their learning through a product or performance.

It is more productive for learners to find answers to their own questions rather than teachers providing the answers and their opinions in a learning-centred classroom.

INCLUSION

Inclusion is ensuring access and learning for all learners especially those disadvantaged. All learners are entitled to a broad and balanced curriculum in every school in Ghana. The daily learning activities to which learners are exposed should ensure that the learners' right to equal access and accessibility to quality education is met. The Curriculum suggests a variety of approaches that address learners' diversity and their special needs in the learning process. When these approaches are effectively used in lessons, they will contribute to the full development of the learning potential of every learner. Learners have individual needs, learning experiences and different levels of motivation for learning. Planning, delivery and reflection on daily learning experiences should take these differences into consideration. The curriculum therefore promotes:

1. learning that is linked to the learner's background and to their prior experiences, interests, potential and capacities.
2. learning that is meaningful because it aligns with learners' ability (e.g. learning that is oriented towards developing general capabilities and solving the practical problems of everyday life); and
3. the active involvement of the learners in the selection and organisation of learning experiences, making them aware of their importance and also enabling them to assess their own learning outcomes.

DIFFERENTIATION AND SCAFFOLDING

Differentiation is a process by which differences (learning styles, interest and readiness to learn) between learners are accommodated so that all learners in a group have the best possible chance of learning. Differentiation could be by content, tasks, questions, outcome, groupings and support. Differentiation as a way of ensuring each learner benefits adequately from the delivery of the curriculum can be achieved in the classroom through i) task ii) support from the Guidance and Counselling Unit and iii) learning outcomes.

Differentiation by task involves teachers setting different tasks for learners of different abilities. E.g. in sketching the plan and shape of their classroom some learners could be made to sketch with free hand while others would be made to trace the outline of the plan.

Differentiation by support involves the teacher giving the needed support and referring weak learners to the Guidance and Counselling Unit for academic support.
Differentiation by outcome involves the teacher allowing learners to respond at different levels. Weaker learners are allowed more time for complicated tasks.
Scaffolding in education refers to the use of a variety of instructional techniques aimed at moving learners progressively towards stronger understanding and ultimately greater independence in the learning process.

It involves breaking up the learning task, experience or concepts into smaller parts and then providing learners with the support they need to learn each part. The process may require a teacher assigning an excerpt of a longer text to learners to read and engaging them to discuss the excerpt to improve comprehension. The teacher goes ahead to guide them through the key words/vocabulary to ensure learners have developed a thorough understanding of the text before engaging them to read the full text. Common scaffolding strategies available to the teacher are:

1. give learners a simplified version of a lesson, assignment, or reading, and then gradually increases the complexity, difficulty, or sophistication over time;
2. describe or illustrate a concept, problem, or process in multiple ways to ensure understanding;
3. give learners an exemplar or model of an assignment they will be asked to complete;
4. give learners a vocabulary lesson before they read a difficult text;
5. describe the purpose of a learning activity clearly and the learning goals they are expected to achieve; and
6. describe explicitly how the new lesson builds on the knowledge and skills learners were taught in a previous lesson.

INFORMATION AND COMMUNICATION TECHNOLOGY

Information and Communication Technology (ICT) has been integrated into the Mathematics curriculum as part of the core of education, alongside reading, writing and numeracy. Thus, the curriculum is designed to use ICT as a teaching and learning tool to enhance deep and independent learning. For instance, the teacher, in certain instances, is directed to use multimedia to support the teaching and learning process.

ICT has the potential to innovate, accelerate, enrich and deepen skills. It also motivates and engages learners to relate school experiences to work practices. It provides opportunities for learners to fit into the world of work. Some of the expected outcomes that this curriculum aims to achieve are:
. improved teaching and learning processes;
improved consistency and quality of teaching and learning;
3. increased opportunities for more learner-centered pedagogical approaches;
4. improved inclusive education practices;
5. improved collaboration, creativity, higher order thinking skills; and
6. enhanced flexibility and differentiated approach of delivery

The use of ICT as a teaching and learning tool is to provide learners an access to large quantities of information online and offline. It also provides the framework for analysing data to investigate patterns and relationships in statistical data]. Once learners have made their findings, ICT can help them organise, edit and print the information in many different ways.

Learners need to be exposed to various ICT tools around them including calculators, radios, cameras, phones, television sets and computers and related software like Microsoft Office packages - Word, PowerPoint and Excel as teaching and learning tools. The exposure that learners are given at the primary school level to use ICT in exploiting learning will build their confidence and will increase their level of motivation to apply ICT use in later years, both within and outside of education. ICT use for teaching and learning is expected to enhance the quality and competence level of learners.

ORGANISATION AND STRUCTURE OF THE CURRICULUM

The curriculum is organised under key headings and annotations.

ANNOTATION

A unique annotation is used to label the class, strands, sub-strands, content standards and learning indicators in the curriculum for the purpose of easy referencing. The annotation is defined in Figure I:

Strands are the broad areas/sections of the Mathematics content to be studied.

Sub-strands are the topics within each strand under which the content is organised.

Content standard refers to the pre-determined level of knowledge, skill and/or attitude that a learner attains by a set stage of education.

Indicator is a clear outcome or milestone that learners have to exhibit in each year to meet the content standard expectation. The indicators represent the minimum expected standard in a year.

Exemplar refers to support and guidance, which clearly explains the expected outcomes of an indicator and suggests what teaching and learning activities could take to support the facilitators/teachers in the delivery of the curriculum.

ORGANIZATION OF THE STANDARDS (BI - B3)
The content standards in this document are organized by grade level. Within each grade level, the contents are grouped first by strands. Each strand is further subdivided into sub-strands of related indicators.

- Indicators are learning outcomes that define what learners should know and be able to do.
- Content Standards are groups of related indicators. Note that indicators from different standards may sometimes be closely related, because mathematics is a connected subject.
- Sub-strands are larger groups of related indicators (or mathematics topics to be studied). Indicators from different sub-strands may sometimes be closely related.
- Strands are the main branches of the mathematics content to be studied.

The Standards are organised at the BI - B3 phase under four strands:
I. Number
2. Algebra
3. Geometry and Measurement
4. Data

Table I shows the strands and sub-strands of the BI - B3 curriculum and Table 2 shows the scope of the sub-strands.

Table I Strands and sub-strands of the BI-B3 curriculum

STRANDS	SUB-STRANDS		
	BI	B2	B3
Number (Counting, Representation and Cardinality) Operations and Fractions	Numbers: (Counting, Representation and Cardinality)	Numbers: (Counting, Representation and Cardinality)	Numbers: (Counting, Representation, and Cardinality)
	Numbers: (Operations)	Numbers: (Operations)	Numbers: (Operations)
	Fractions Representation and Relationship	Fractions Representation and Relationship	Fractions Representation and Relationship
Algebra	Patterns and Relationships	Patterns and Relationships	Patterns and Relationships
Geometry and Measurement	Lines and Shapes	Lines and Shapes	Lines and Shapes
	Position and Transformation	Position and Transformation	Position and Transformation
	Measurements	Measurements	Measurements
Data	Data (Collection, Presentation, Analysis and Interpretation)	Data (Collection, Presentation, Analysis and Interpretation)	Data (Collection, Presentation, Analysis and Interpretation)

Table 2 Scope of the sub-strands of the B I - B3 curriculum

STRANDS	SUB-STRANDS	B I	B2	B3
Number	Whole Numbers: Counting and Representation	\checkmark	\checkmark	\checkmark
	Whole Numbers Operations	\checkmark	\checkmark	\checkmark
	Fractions Representation and Relationship	\checkmark	$\sqrt{ }$	$\sqrt{ }$
Algebra	Patterns and Relationships	\checkmark	\checkmark	\checkmark
Geometry and Measurement	Lines and Shapes	$\sqrt{ }$	$\sqrt{ }$	\checkmark
	Position and Transformation	\checkmark	$\sqrt{ }$	$\sqrt{ }$
	Measurements	\checkmark	$\sqrt{ }$	\checkmark
Data	Data (Collection, Presentation, Analysis and Interpretation)	\checkmark	$\sqrt{ }$	\checkmark

BASIC I

BASIC I

Strand I: NUMBER

Sub-Strand I: Number: Counting, Representation, Cardinality \& Ordinality

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
BI.I.I.I Describe numbers and the relationship between numbers 0 to 100	BI.I.I.I.I Use number names, counting sequences and how to count to find out "how many?" E.g. I. Count by Is (forwards and backwards) between two given numbers between 0 and 100 ; or by 2 s and 10 s; Identify and correct errors or omissions in counting or skip counting sequences E.g. 2. Count to answer "how many?" questions about as many as 100 objects arranged in a line, a grid or a circle; Show that the count of a group of up to 100 objects does not change regardless of the order in which the objects are counted or the arrangement of the objects E.g. 3. Estimate the number of objects in a small group (up to 100) and describe the estimation strategy used; Select an appropriate estimate among all those given for a group of up to 100 objects and justify the choice E.g. 4. Represent the number of objects in a group with a written numeral 0 to 100. Use ordinal numbers to describe the position of objects up to 10th place	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership; Attention to Precision; Cultural Identity

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
BI.I.I.I Describe numbers and the relationship between numbers 0 to IOO. CONT'D	BI.I.I.I. 2 Identify numbers in different positions around a given number (0-100) E.g. I. Display a number chart with numbers multiples of say 4 between 0 and 100 and have learners identify numbers in different positions around a given number. Put learners in convenient groups and give each group a number grid and have them identify numbers in different positions around a chosen number. BI.I.I.I. 3 Use number names and non-standard units for measuring (lengths and volumes) to count to find out "how long or how much?"...up to 100 E.g. I. Have learners use their feet, hand-span and referent materials to find how long a table, window and door frames are etc., by counting the number of times their feet, hand-span and referent materials are able to do this E.g. 2. Have learners use empty containers such as bottles, cups etc. to determine the capacity of other bigger containers by counting to find how much (the number of times) the bottles, cups etc. are able to do this	Learners develop: Problem Solving skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
BI.I.I.I Describe numbers and the relationship between numbers 0 to IOO. CONT'D	BI.I.I.I. 4 Use comparative language to describe the relationship between quantities/numbers up to $\mathbf{1 0 0}$ using place value and the number line E.g. I. Use I-to-I correspondence or matching to solve problems that involve comparing 2 sets having between I to 100 objects and explain how he/she solved the problem (finding which set has more or less, which groups have the same as) E.g. 2. Use the terms "more than", "less than" or "the same as" when comparing two groups having betweenl to 100 objects E.g. 3. Put groups between I to 50 objects in increasing or decreasing order and justify his/her answer or explain what he/she did to find the answer E.g. 4. Identify numbers and groups of objects that are that are I more or less than a number (for numbers I to 100 E.g. 5 Use the number line to compare and order whole numbers from 0 to 100 BI.I.I.I. 5 Represent the comparison of two number up to 100 using the symbols ">, < or =" E.g. I. Use the terms "more than", "less than" or "the same as" when comparing two numbers betweenl to 50 . E.g. 2. Use the symbols ">", "<" or "=" when comparing two numbers betweenl to 50	Learners develop: Problem Solving skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
BI.I.I.I Describe numbers and the relationship between numbers 0 to 100 CONT'D	BI.I.I.I. 6 Describe the relationship between quantities/numbers up to 100 E.g. I. Use one-to-one correspondence, matching or counting to identify whether the number of objects in one group of up to 20 objects is greater than, less than or equal to the number of objects in another; describe the relationship between the two groups or numerals using the terms greater than, less than, or equal to E.g. 2. Build a group that has more than, less than, or the same number as a given set E.g. 3. Demonstrate an understanding of the relative size of numbers up to 100 by: - Order groups of I to 20 objects and then a small set of numerals between I and 20 , and justifying the arrangement - Describe the relative size of numbers up to 100 (i.e., say whether one number is a lot or a little bigger or smaller than another, or 5 more than another number); - Place given numerals between 0 and 50 on a number line that has 0,510 and 20 indicated as benchmarks - Act out and solving problems (pictures and words) that involve comparing quantities (i.e., Johnson has 3 mangoes, Adwoa has 7 . what can you say?)	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision

Sub-Strand 2: Number Operations (Addition, Subtraction, Multiplication and Division)

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
BI.I.2.I Develop a conceptual understanding of addition and subtraction	BI.I.2.I.I Demonstrate understanding of addition as joining and finding how many altogether and subtraction as separating and finding how many left; numbers 0 to 20 E.g. I. Acting out a given story problem presented orally. For instance, - Sena has 8 bottle caps. She takes 5 more bottle caps from Kofi. How many bottle caps does Sena now have? - Kojo has 15 pencils. He gave 7 to Ato. How many pencils are left? - Indicating if the scenario in a story problem represents an addition or a subtraction and justifying the answer E.g. 2. Creating a story problem for subtraction or addition or for a given number sentence (+ and - within 20) - Daniel's family have 6 electric bulbs in the house. Two of the bulbs are not working. How many bulbs can Daniel's family use?	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative learning; Personal Development and Leadership Attention to Precision; Cultural Identity
BI.I.2.2 Demonstrate an understanding of the concept of equality	BI.I.2.2.I Use objects and pictorial models to solve word problems involving joining, separating and comparing sets within 20 and unknowns as any one of terms in problems such as $9+7=[], 13+[]=19$ and $14-[]=3$. E.g. I. Explaining that $=$ means "the same as' - Identifying if two quantities or groups of objects are equal or not and justifying answers - Using the symbol $=$ to record equal relationships (e.g., $3=\square \quad \square \quad \square \square$ or $\square \square \square$ $\square+\square \square=\square \square \square \square \square)$ - Representing a pictorial or concrete equality in symbolic form (e.g., represent \square \square \square \square = \square \square \square E.g. 2. Use a symbol (\qquad) to represent the unknown in an addition or subtraction statement.	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative learning; Attention to Precision

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
BI.I.2.2 Demonstrate an understanding of the concept of equality. CONT'D	BI.I.2.2.2 Use relationship between addition and subtraction to demonstrate understanding of equality for numbers within 20 E.g. I. Demonstrate an understanding of the relationship between addition and subtraction by: transforming a subtraction as an equivalent addition and vice versa (For example, subtracting eight from $10(10-8)$ is the same as identifying the number that must be added to 8 to make 10) 10 - 8 What? Means 8 What? $=10$ BI.I.2.2.3 Generate and solve word problem situations when given a number sentence involving addition and subtraction of numbers within 20 E.g. Write addition and subtraction problems, learners in their groups discuss and generate word problems to match the number sentences	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
BI.I.2.3 Demonstrate fluency with addition and subtractionrelationships	BI.I.2.3.I Use strategies for solving basic addition facts (and related subtraction fact) to 10 . (Note: The focus is on developing strategies to find answers, not memorising number facts. That comes in P2 and P3) E.g. I. Naming the number that is I more, 2 more, I less, or 2 less than a number given by the teacher or another pupil (for numbers up to 20 only) E.g. 2. Naming the double of a number to 10 E.g. 3. Identifying 10 more or less than a number between 0 and 20 , and eventually between 0 and 100 E.g. 4. Identifying combinations to 5 or 10 (i.e., given a number, quickly identify how many more must be added to get 5 or I0)	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
BI.I.2.4 Apply strategies for adding and subtracting to 20	BI.I.2.4.I Use counting on, counting down and missing addend strategies for adding and subtracting within 20 E.g. I. Relating counting to addition (i.e., recognizing that adding 2 is the same as counting on 2) E.g. 2. Counting on (i.e., for $5+3$, start at 5 and count on 3 places... 6, 7, 8. The answer is 8.) E.g. 3. "Making 10s" (i.e., if $7+2+3$, do $7+3=10$ first then add 2. The answer is 12 . Or if given $7+2+3$, change the order of the addends to $7+3+2$ to produce combinations that add to 10 ; Or if given $2+$ $6+4$, add the two last addends first to produce $2+6+4=2+10$ $=12$ Or if given $8+3$, change question to $8+2+1=10+1=11$) E.g. 4. "Making doubles" (i.e., if $5+4$, do $4+4=8$ then add I. The answer is 9 . Or if given $6+7$, change question to $6+6$, which give 12 then add I. The answer is 13). Relating subtraction to counting down (i.e., Recognizing that subtracting 3 is the same as counting down 3) (i.e., for $15-3$, start at 15 and count on 3 places... 14, 13, 12. The answer is 12.) E.g. 5. Relating subtraction to comparison or finding the difference (Recognizing that subtracting 5 from 8 is the same as ' 5 is how many less than 8 ; or ' 8 is how many more than 5 ; E.g. 6. "Using addition to subtract" or re-writing as addition sentence and finding the missing addend (i.e., if given $7-\ldots=5$, change the question to the addition $5+\ldots=7$. The answer is 2 , so $7-2=5$. $7-\text { What? }=5 \text { means } 5+\text { What? }=7$	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
BI.I.2.4 Apply strategies for adding and subtracting to 20 CONT'D	Or if given 8-6 = \qquad change question to $6+\ldots=8$. The answer is 2 , so $8-6=2$). That is, $8-6=\text { What? means } 6+\text { What? }=8$	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision

BI.I.2.4

Apply strategies for adding and subtracting to $\mathbf{2 0}$

CONT'D

E.g. 2. Use a variety of strategies (objects, drawings, mental strategies, counting down, etc.) to solve subtraction word problems to 20 involving taking from, taking apart and comparing - and with unknowns in all positions.

- Kojo has 15 pencils. He gave 7 to Ato. How many pencils are left?
- Kafui had 5 pencils. Kwame had 3 pencils. How many more pencils did Kafui have than Kwame?

Learners develop:
Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision

Sub-Strand 3: Fractions

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
BI.I.3.I Develop an understanding of halves using concrete and pictorial representations [Exclude notation here]	BI.I.3.I.I Understand the fraction one-half as the quantity obtained by taking I part when a whole is partitioned into two equal parts E.g. I. Use concrete objects to explain the fraction half as the quantity obtained by taking I part when a whole object is partitioned into two equal parts E.g. 2. Use pictorial representations to explain the fraction half as the quantity obtained by taking I part when a whole object is partitioned into two equal parts E.g. 3. Use pictorial representations to help learners sort fractions into those that are halves and those that One whole one half are not halves	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
BI.I.3.I. Develop an understanding of halves using concrete and pictorial representations [Exclude notation here]. CONT'D	BI.I.3.I. 2 Count in halves using concrete and pictorial representations of halves E.g. I. Show several halves of concrete objects (like half oranges, half piece of stick, half piece of card, etc. and have them count them in halves (using the language one-half, two-halves, three-halves, etc.) E.g. 2. Show learners several pictorial representations of halves and have them count (using the language one-half, two-halves, three-halves, etc.)	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision

Sub-Strand 4: Money

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
BI.I.4.I Identify coins, their values and the relationships among them in order to recognize the need for monetary transactions	BI.I.4.I.I Recognise Ghanaian coins by name, including one pesewa, five pesewas, ten pesewas, twenty pesewas, fifty pesewas and one cedi by value and describe the relationship among them E.g. I. Display the various coins currently being used for transaction in Ghana and initiate discussion on the need for monetary transaction. Learners touch feel and say the features of each coin E.g. 2. Introduce the one pesewa, five pesewas, ten pesewas, twenty pesewas, fifty pesewa and guide learners learn to identify and recognize the money by name and value E.g. 3. State the relationship between 2 p and 10 p; 5 p and $10 p ; 2$ p and $20 p$; $1 p$ and $\phi I, I O p$ and ϕI	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision; Cultural Identity and Global Citizenship

Strand 2: Algebra
Sub-StrandI: Patterns and Relationship

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
BI.2.I.I Recognize, create, extend and describe nonnumerical and simple numerical patterns.	BI.2.I.I.I Demonstrate an understanding of repeating patterns with 2 to 4 repeating elements E.g. I. Identifying, duplicating, extending or creating a simple - number patterns (I, 2, 3, 4, I, 2, 3, 4... \qquad) with 2 to 4 repeating elements, - shape patterns (e.g. with 2 to 4 repeating elements, - sound (clap, clap, snap, snap, clap, clap, snap, snap...) with 2 to 4 repeating elements, or - action patterns (stand up, sit down, clap, stand up, sit down, clap...) with 2 to 4 repeating elements. E.g. 2. Identifying and describing errors or missing elements in number, shape, sound or action patterns with 2 to 4 repeating elements (e.g., - - 2462 \qquad 6) E.g. 3. Representing a repeating sound or number pattern as shape pattern or vice versa (e.g., represent I, 2, I, 2 as clap, snap, clap, snap or as \square () E.g. 4. Identifying and describing patterns in and outside the classroom (in a song, in a fabric, etc.) For instance, use patterns in Kente as examples of repeating patterns.	Learners develop : Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision; Cultural Identity and Global Citizenship

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
BI.3.I.I Analyse attributes of twodimensional shapes and three-dimensional objects to develop general concept about their properties	BI.3.I.I.I Distinguish between attributes that define a twodimensional figure or three-dimensional figure and attributes that do not define the shape Display 2D cut out shapes and 3D objects and have learners: E.g. I. Identify 2D shapes (triangles, squares, rectangles, circles) on the surfaces of 3D objects (cubes, cylinders, spheres, rectangular prisms) in the classroom or beyond; Identify what features define a shape or an object (e.g. triangles are closed and have three sides) and other features (colour, orientation or size) E.g. 2. Sort a given set of 2D shapes and 3D objects using a given single feature or criteria (size, shape, etc.) and explain the sorting rule, feature or criteria used to sort them; Describe the difference between two given pre-sorted sets of familiar 3D objects or 2D shapes and the feature or criteria used to sort them E.g. 3. Identify 3D objects in the environment that have parts similar to a given 2 D shape (e.g., find the parts of a can or bucket that are similar to a circle) E.g. 4. Create a composite 2D shape from 2D shapes (i.e., build a new shape using triangle, circles, rectangles, or squares, or build a rectangle using squares or a square using triangles etc.) and describe it. (Make several of the logic block set below with card or plywood and paint them)	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision; Cultural Identity and Global Citizenship

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
BI.3.I.I Analyse attributes of twodimensional shapes and three-dimensional objects to develop general concept about their properties. CONT'D	BI.3.I.I. 2 Identify three-dimensional shapes, including spheres ones, cylinders, rectangular prisms (including cubes), and triangular prisms and describe their attributes using formal geometric language E.g. I. Sort a given set of 3D shapes using a given single feature or criteria (size, shape, etc.) and explain the sorting rule, feature or criteria used to sort them E.g. 2. Describe the difference between two given pre-sorted sets of familiar 3D shapes and the feature BI.3.I.I. 3 Identify two-dimensional shapes, including circles, triangles, rectangles and squares as special rectangles, rhombuses and hexagons and describe their attributes using formal geometric language E.g. I. Sort a given set of 2D shapes using a given single feature or criteria (size, shape, etc.) and explain the sorting rule, feature or criteria used to sort them E.g. 2. Describe the difference between two given pre-sorted sets of familiar 2D shapes and the feature	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision

Sub-Strand 2: Position/Transformation

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES		
BI.3.2.I Describe the position of objects in space	BI.3.2.I. I Tell the position of objects relative other objects in space using words such above, below, to the right etc.	Learners develop: E.g. I. Learners tell their sitting position relative to other children in the classroom. For example, Yaw is on the third line (row), three places from Ama and to the left of Kwesi		Problem Solving Skills; Critical
:---				
Thinking; Justification of Ideas;				
Collaborative Learning; Personal				
Development and Leadership Attention				
to Precision; Cultural Identity and				
Global Citizenship				

Sub-strand 3: Measurement - Length, Mass and Capacity

CONTENT STANDARS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
BI.3.3.I	BI.3.3.I.I Develop an understanding of measuring as a process of comparing pairs of items using words such as smaller, longer, thinner, heavier, bigger etc. understanding of Measurement	E.g.I. Learners bring together pairs of objects on the same flat surface develop: to compare to find out which is taller

Strand 4: Data

Sub-Strand I: Data Collection, Organisation, Interpretation, Presentation and Analysis

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
BI.4.I.I Organise, represent and interpret data	BI.4.I.I.I Organise and represent (using pictures/objects) data with up to three categories. E.g. I. Have a picture of learners in front of the class and ask the learners to use two different pictures/objects to represent the number of males and females. Repeat with pictures of animals E.g. 2. Using a one-to-one correspondence to solve simple problems (i.e. how many altogether, how many more or less) problems requiring interpretation of the concrete representation of pictures as in E.g. I above BI.4.I.I. 2 Organise a given set of data into three categories, find the total number of data points and determine how many are in each category and compare the number in any two category E.g. I. Learners use tally charts with data relevant to their daily lives (e.g. favourite drinks, eye colour , pets etc) to analyze and compare data in a picture graph E.g. 2. Learners construct pictures graphs in groups as well as individually based on data given them	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision

BASIC 2

BASIC 2

Strand I: NUMBER

Sub-strand I: Counting, Representation, Cardinality \& Ordinality

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B2.I.I.I Count and estimate quantities from 0 to 1000	B2.I.I.I.I Use number names, counting sequences and how to count to find out "how many?" E.g. I. Skip count forwards and backwards to and from 1000 respectively by $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s , starting at 0 or at multiples of $2,5,10,50$ and 100 ; Identify and correct errors or omissions in counting or skip counting sequences E.g. 2. Count by $2 \mathrm{~s}, 5 \mathrm{~s}$ or 10 s , to answer "how many?" questions about as many as 100 or 1000 objects E.g.3. Represent the number of objects in a group with a written numeral to 1000 E.g. 4. Estimate the number of objects in a group of up to 1000 describe the estimation strategy used; Select an appropriate estimate among all those given and justify the choice	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B2.I.I.I Count and estimate quantities from 0 to 1000 . CONT'D	B2.I.I.I. 2 Identify numbers in different positions around a given number in a number chart. (1-1000) E.g. I. Display a number chart with numbers between 0 and 100 and have learners identify numbers in different positions around a given number. Put learners in convenient groups and give each group a number grid and have them identify numbers in different positions around a chosen number. For example, choose 18 and identify numbers above, below, to the right or to the left etc. B2.I.I.I. 3 Use number names and non-standard units (marked IOs and Is) for measuring (lengths and volumes) to count to find out "how long or how much?" up to 999 E.g. I. Have learners use their feet, strides, arms, hand-span and referent materials such as sticks or threads to find how long a table, window and door frames etc., by counting the number of times their feet, hand-span and referent materials is able to do this E.g. 2. Have learners use empty container such as bottles, cups etc. to determine the capacity of other bigger containers by counting to find how much (the number of times) the bottles, cups etc. is able to do this	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B2.I.I.I Count and estimate quantities from 0 to 1000. CONT'D	B2.I.I.I. 4 Demonstrate a conceptual understanding of place value of whole numbers between 0 and 100 E.g. I. Develop a conceptual understanding of place value of whole numbers between 0 and 1000 by: - explain and show- with bundles of IOs and Is and a tens frame the meaning of each digit in a 2-digit number (when the two Tens Frame digits are different, as well as when the two digits are the same) and representing the number in a tens frame (Use other possible representations of place value which include manipulatives such as threaded $100 \mathrm{~s}, 10 \mathrm{~s}$, and loose bottle caps; and multi-base ten material (units, flats and squares) with numeral cards - decompose or partition numbers to 1000 into hundreds, tens and ones (e.g.: $153=100+50+3$, or $153=100+53$) - explain why the value of a digit depends upon its placement within a numeral. - read a number by indicating the value of each digit (i.e., reading 43 as forty-three and not four three. E.g. 2. Partition or decompose numbers to 100 and then to 1000 into equivalent expressions (e.g.: $47=20+20+7$, or $30+10+7$, etc.)	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B2.I.I.I Count and estimate quantities from 0 to 1000. CONT'D	B2.I.I.I. 5 Represent number quantities up to 1000 in equivalent ways focusing on place value and equality E.g. I. Demonstrate an understanding of how place value determines the relative size of numbers up to 1000 by: describing the relative size of two or more numbers (i.e., saying whether one number is a little or a lot bigger or smaller than another and justifying the answer) E.g. 2 Represent and describe numbers to 1000 in equivalent ways (e.g., 147 is 3 less than 150, is 7 more than 140, is almost half of 300 , is a little larger than 145 but a lot larger than 15 , etc.) E.g. 3. Arrange groups of up to 100 objects in equal groups in more than I way and describe the arrangement; or describe the arrangement and how many are left over (e.g. arrange 66 as two groups of 33 or six groups of II, or 3 groups of 22 or 5 groups of 12 and 6 left over) B2.I.I.I. 6 Use place value to compare and order whole numbers up to 100 using comparative language, numbers, and symbols (>, <, or =). E.g. I. Identify which of two given numbers is bigger (or smaller), explain why, and represent the relationship using the symbols<and> E.g. 3. Put a small group of numbers in increasing or decreasing order and justify the order using place value E.g. 4. Identify the missing numbers in a section of number line from I to 100 or in a hundreds chart and justifying the answer using place value E.g. 5. Solve word problems that involve comparing quantities up to 100 (i.e., Ahmed has 23 chickens. Amina has 46 . What can you say?)	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision

\begin{tabular}{|c|c|c|}
\hline CONTENT STANDARDS \& INDICATORS AND EXEMPLARS \& SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES \\
\hline \begin{tabular}{l}
B2.I.2.I \\
Demonstrate conceptual understanding of operations of addition and subtraction with sums up to 100
\end{tabular} \& \begin{tabular}{l}
B2.I.2.I.I Use conceptual understanding of addition and subtraction to add, and subtract numbers to 100 \\
E.g. I. Add a given set of numbers in two different ways (e.g. \(35+54\) and \(54+35\) or \(18+12+3\) and \(3+18+12\)) and explaining why the order in which numbers are added does not change the sum \\
E.g. 2. Explain why the difference or sum is the same as the initial number when 0 is added or subtracted from a number (e.g., why \(27+0=\) 27 or 55-0 = 55) \\
E.g. 3. Match a word problem to a missing addend (e.g., \(34+\ldots=57\)), missing subtrahend (e.g. \(27-\ldots=24\)) or missing minuend (_ . \(54=63\)) statement \\
E.g. 4. Create an addition or subtraction number sentence and word problem for a number up to 100 (i.e., given the solution 53, create an addition or subtraction sentence with an answer of 53 and a corresponding word problem).
\end{tabular} \& \begin{tabular}{l}
Learners develop: \\
Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision
\end{tabular} \\
\hline \begin{tabular}{l}
B2.1.2.2 \\
Demonstrate an understanding of the concept of "not equal to" to solve addition and subtraction problems with sums up to 100
\end{tabular} \& \begin{tabular}{l}
B2.I.2.2.I Use the concept of "equal to" and "not equal to" to solve addition and subtraction problems with sums up 100 \\
E.g. I. Explaining that that' " \(\neq\) " means "not the same as" or "not equal to" \\
- Constructing and drawing two sets that are not equal, explaining why they are not equal and recording the relationship using the symbol \(\neq\) (e.g., \(\square\)
\(\square\) \(\neq \square\) \(\square\) \(\square\)); Changing two given sets, equal in size, to create sets that are not equal (e.g., change \(\square\)
\(\square\)
\(\square\) =
\(\square\)

to \square

\square), explain the changes made and why

 \&

Learners develop:

Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision
\end{tabular}

\hline
\end{tabular}

[^0]| CONTENT STANDARDS | INDICATORS AND EXEMPLARS | SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES |
| :---: | :---: | :---: |
| B2.1.2.2
 Demonstrate an understanding of the concept of "not equal to" to solve addition and subtraction problems with sums up to 100
 CONT'D | - Determining whether two sides of a given number sentence are equal or not and using the appropriate symbol to represent the relationship (e.g., $16 \neq 8+5$)
 E.g. 2. Using a symbol (\square) to represent an unknown in addition/subtraction statements to 100.
 E.g. 3. Demonstrate an understanding of the relationship between addition and subtraction by describing a subtraction as an equivalent addition and vice versa; i.e. finding the missing addend. (For example, that subtract 40 28 is the same as finding the number that must be added to 28 to make 40). $40-28=\text { What? Means } 28+\text { What? }=40$
 Or if given 40-28 = \qquad change question to $28+$ $=40$. The answer is 12 , so $40-$ $28=12$). | Learners develop:
 Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership
 Attention to Precision |
| B2.I.2.3
 Develop and use strategies for mentally computing basic additions and subtraction facts to 19 | B2.I.2.3.I Use mental strategies for basic addition facts to 19 and related subtraction facts to 19
 E.g. I. Demonstrate fluency with addition and subtraction-related relationships by:
 - Quickly naming numbers that are $\mathrm{I}, 2$, or I 0 more or less than a number between I and I00, or 5 more than a number that is a multiple of 5
 - Quickly Identifying the double of a number between I and I2
 - Add and subtract combinations to 10 quickly and accurately. | Learners develop:
 Problem Solving Skills; Critical
 Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision |

| CONTENT STANDARDS | \quad INDICATORS AND EXEMPLARS |
| :--- | :--- | :--- | :--- |\(\left.\quad \begin{array}{c}SUBJECT SPECIFIC PRACTICES

AND CORE COMPETENCIES\end{array}\right]\)

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B2.1.2.4 Develop and use conventional and personal strategies for computing additions up to 100	B2.I.2.4.I Use conventional strategy to add and subtract within 100 E.g. I. Use objects (groups of tens and ones) or drawings to model addition and subtraction of I and 2 digit numbers (with answers within 100), with and without regrouping) and record the process symbolically, using an addition or subtraction frame. Addition Frame Subtraction Frame B2.I.2.4.2 Use personal strategies to add and subtract within 100 E.g. I. Decompose a number into easier numbers to add and doing partial sums- Decomposing one number into easier numbers to add E.g., when adding $28+47$, record think $20+40+8+7$, which is the same as $60+15$ which is the same as 75	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B2.I.2.4 Develop and use conventional and personal strategies for computing additions up to 100 CONT'D	E.g. 2. 'Friendly jumps" strategy, where one of the numbers is decomposed into a friendlier number and added in "chunks" or by "friendly jumps" e.g. when adding $26+32$, start with 26 , add 10 three times to get $56(26+10+10+10)$, then add on 2 to get 58 . The answer is 58 . (NOTE: This strategy is similar to the first strategy of decomposing) E.g. 3. Moving part of one number to the other number to create numbers that are easier to add E.g. when adding $29+56$, move I from 56 to 29 to create the expression $30+55=85$) E.g. 4. Compensation - Adding more to a number to make it friendlier, then subtracting the amount added from the answer e.g. when adding $26+39$, add I to 39 to create the expression 26 + 40 , which gives 76 , then subtract from the answer the I that was added; $76-I=75$, so the answer is 75 . B2.I.2.4.3 Solve one-step and multi-step word problems involving addition and subtraction within 100 using a variety of strategies based on place value, including algorithms. E.g. I. Yaw has 32 books. Aisha added I3 more books to Yaw's books. How many books do they have altogether? E.g. 2. Mr. Haruna gave 45 books to Yaa' She gave II of the books to her sister. How many books are left? E.g. 3. Araba needs 8 Ghana cedis to buy exercise books. She has only 5 Ghana cedis. How much money does she need in order to buy the books?	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision

Sub-Strand 3: Fractions

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B2.I.3.I Develop an understanding of halves and fourths using concrete and pictorial representations [Exclude notation here]	B2.I.3.I.I Understand the fraction one-half and one-quarter as the quantity obtained by taking I part when a whole is partitioned into two or four equal parts E.g. I. Use concrete objects to explain the fraction one-fourth as the quantity obtained by taking I part when a whole object is partitioned into four equal parts. E.g. 2. Use pictorial representations to explain the fraction onefourth as the quantity obtained by taking I part when a whole object is partitioned into four equal parts. E.g. 3. Use pictorial representations to help learners sort fractions into those that are halves and those that are one-fourths. \bigcirc (1)	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision; Cultural Identity

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B2.I.3.I Develop an understanding of halves and fourths using concrete and pictorial representations [Exclude notation here] CONT'D	B2.I.3.I. 2 Count in halves and quarters (fourths) using concrete and pictorial representations) of halves and fourths. E.g. I. Show several fourths of concrete objects (or card cut outs) and have them count them in fourths (using the language one-fourth, twofourths, three-fourths, etc.) E.g. 2. Show learners several pictorial representations of fourths and have them count (using the language one-fourth, two-fourths, three-fourths, etc.) B2.I.3.I.3 Determine the number of halves and quarters in a whole E.g. I. Show learners several pictorial representations (or card cut outs) of halves, fourths and wholes and ask them to state the relationship between (i) a whole and one-half; (ii) a whole and one-fourth, and (iii) onehalf and one-fourth.	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision

Sub-Strand 4: Money

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B2.I.4.I. Determine the value of coins and notes in order to solve monetary transactions	B2.I.4.I.I. Recognise Ghanaian coins, and currency notes to include at least I cedi, 2 cedis, 5 cedis, 10 cedis, 20 cedis and 50 cedis and determine the value of a collection of coins and notes up to at least $\mathbf{5 0}$ Ghana cedis E.g. I. Display the Ghanaian cedi (coins and notes) currently being used for transaction in Ghana and initiate discussion on the need for monetary transaction. Learners touch feel and say the features of each coin E.g. 2. Introduce the notes (i.e. I cedi, 2 cedis, 5 cedis 10 cedis etc.) in turns and have learners examine and talk about its features E.g. 3. State the relationship between $\phi 2$ and $\phi 10 ; \phi 5$ and $\phi 10 ; \phi 2$ and $\phi 20 ; \phi 5$ and $\phi 20, \phi 10$ and $\phi 50$	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership. Attention to Precision

Strand 2: ALGEBRA

Sub-Strand I: Patterns and Relationships

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B2.2.I.I Recognize, create, extend, describe, and use patterns and rules to solve mathematical tasks	B2.2.I.I.I Demonstrate an understanding of increasing and decreasing number patterns E.g.I Identify the pattern rule used to create a pattern that increases or decreases by 2,5 or 10 . (i.e. in the pattern $2,4,6,8, \ldots$ the rule is "add 2 or jump by 2) and extend the pattern for the next 2 or 3 terms. E.g. 2. Identify errors or omissions in increasing or decreasing patterns (e.g. 5, $10,20,25,30 \ldots$) and explain the reasoning and strategy used to identify the pattern. B2.2.I.I. 2 Identify, create and describe the rule for simple number patterns involving repeated addition or subtraction, skip counting and arrays of objects. E.g. I. Find the missing terms in the following: - $\quad 9, I, 3,5,9, I, 3,5$, \qquad ; \qquad - $2,4,6,8,10$, \qquad ; __, - $\quad 5,10,15,20$ \qquad \qquad ; or - $54,55,56,57$, \qquad \qquad . E.g. 2. Identify and describe the rules for the following patterns - $2,4,6,8,10, \ldots$ (the rule is "add two") - $5,10,15,20, \ldots$ - $20,18,16,14, \ldots$	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision; PATTER

Strand 3: GEOMETRY AND MEASUREMENT

Sub-Strand I: 2D and 3D Shapes

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B2.3.I.I Describe and analyse 2D shapes and 3D objects.	B2.3.I.I.I Identify the common features or attributes of a collection of 3D objects (spheres, cylinders, cones, pyramids, cubes) of different dimensions or orientations. E.g. I. Recognise and name 3D objects having specific features or attributes (number of equal faces, types of faces, number of corners, etc.) E.g. 2. Sort a collection of 3D objects by I or 2 features and explain the sorting rule use E.g. 3. Identify examples of these 3D objects in the classroom and community B2.3.I.I. 2 Identify the common features or attributes of a collection of 2D shapes (squares, triangles, rectangles, circles, pentagons, hexagons) of different dimensions or orientations E.g. I. Recognize, draw and name 2D shapes having specific features or attributes (for example a given number of angles or edges/sides E.g. 2. Sort a collection of 2 D shapes by I or 2 features or attributes and explain the sorting rule used E.g.3. Identify examples of these 2 D shapes in the classroom and community. For example, take learners on a tour around the classroom and the school compound. Point out items to them and encourage them to name the 2D shape in the items	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	$\begin{array}{l}\text { SUBJECT SPECIFIC PRACTICES } \\ \text { AND CORE COMPETENCIES }\end{array}$
$\begin{array}{l}\text { B2.3.I.I } \\ \text { Describe and analyse 2D } \\ \text { shapes and 3D objects. } \\ \text { CONT'D }\end{array}$	$\begin{array}{l}\text { B2.3.I.I.3 Create two-dimensional shapes based on given } \\ \text { attributes, including number of sides and vertices. }\end{array}$	$\begin{array}{l}\text { E.g. I. Identify the 2D faces of a given 3D object } \\ \text { E.g. 2. Identify 3D objects in the environment that have parts similar } \\ \text { to a given 2D shape (find the parts of a can or bucket that } \\ \text { are similar to a circle) }\end{array}$
Problem Solving Skills; Critical		
Thinking; Justification of Ideas;		
Collaborative learning; Personal		
Development and Leadership		
Attention to Precision		

Sub-Strand 2: Position/Transformation

CONTENT STANDARDS	INDICATORS AND EXEMPLARS Demonstrate that the length of an object does not change with its placement or direction	B2.3.2.I.I: Prove that the placement or direction of a shape or object does not change its length. E.g. I. Put sticks of equal length in different places and directions and ask learners to identify the longest; viz. which stick in the figure is longest? Then ask them	Learners develop: Problem Solving Skills; Critical to pick the sticks and put them side by side to see if they have equal length.
Collaborative Learning; Personal Development and Leadership Attention to Precision			

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B2.3.3. I Use non-standard units for measuring lengths, heights, mass and distance around objects	B2.3.3.I.I Demonstrate an understanding of how to measure lengths, capacities or mass - directly or indirectly - using nonstandard units E.g. I. Identifying which of two non-standard units would be a better choice for measuring the length, capacity or mass of an object. (E.g. Put a table (see example) of lengths to be measured and object to be used to measure (thumb width, paper clips, pencil lengths, etc.), estimates, and actual measures. Have learners copy table in their exercise book, record their personal estimates and then work with a partner to measure and record the actual measurements. As learners work, go around the classroom to ensure they are using appropriate procedures for measuring) E.g. 2. Explain why the number of non-standard units an object measures varies depending upon the size of the non-standard unit used (example: why the measuring lengths using paperclips results in a higher number than measuring lengths with pencils).	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision

Sub-Strand 3: Measurement- Length, Capacity, Mass and Time

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B2.3.3.I Use non-standard units for measuring lengths, heights, mass and distance around objects cont'd	E.g. 3. Selecting an appropriate non-standard unit for measuring the length, height, distance around, capacity or mass (weight) of a given object, estimating the length, capacity or mass (weight) in non-standard units, and then comparing the estimate with the actual measure E.g. 4. Comparing and ordering objects by length, height, distance around, capacity or mass (weight), using non-standard units, and describing the relative size of the objects (Give learners a series of 3 objects. Have them measure the objects using a non-standard unit and then arrange them from shortest to longest, based on the results) B2.3.3.I.2 Develop an understanding of measuring as a process of comparing three or more items E.g. I. Learners bring together several collection of objects in their environment and compare (directly and indirectly) using words such as smaller, smallest, longer, longest, bigger, biggest, heavier, heaviest etc.	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Attention to Precision

| CONTENT STANDARDS | INDICATORS AND EXEMPLARS | SUBJECT SPECIFIC PRACTICES
 AND CORE COMPETENCIES |
| :--- | :--- | :--- | :--- |
| B2.3.3.2 Use standard
 units to measure lengths,
 heights, mass and distance
 around objects.
 cont'd | B2.3.3.2.I Recognize the need for standard unit of measurement of
 length
 E.g. I. Mark a learner's height on the wall and ask 4 learners to use their
 hands pan to measure the height. On the basis of the different
 measures that would be obtained, get learners to establish the need
 for use of standard units | Problem Solving Skills; Critical Thinking;
 Justification of Ideas; Collaborative
 Learning; Personal Development and
 Leadership Attention to Precision |

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B2.3.3.3 Develop an understanding of the measurement of time taken by events using arbitrary units and the hour	B2.3.3.3.I Read the calendar and solve problems involving the number of days in a week and number of months in a year. E.g. I. Using the calendar to do the following: - Identify or read the day of the week and the month of the year for a given calendar date. - Identify the day (or month) that comes before or after a given day (or month) - Name, order and count the days in a week and the months in a year, E.g. 2. Ask learners to say the rhyme "Thirty-days has September" 30 days has September, April, June, and November. All the rest have 3I, Except for February alone, which has 28 days clear, and 29 in each leap year. B2.3.3.3.2 Use arbitrary units and hour on the clock to measure time to complete simple events. E.g. I. Ask learners to tell how much time (in terms of arbitrary unit timers like claps, water timers, etc.) it would take to - walk round the classroom - to sing a song - to eat one banana E.g. 2. Ask learners to tell describe events that take an hour or more or less than an hour. E.g. 3. Ask learners to watch the clock each hour and note how long they stay in school each day.	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision Cultural Identity and Global Citizenship

Strand 4: DATA

Sub-Strand I: Data Collection, Organisation, Presentation, Interpretation and Analysis

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B2.4.I.I Collect and record data about self and others and use it to answer and pose questions	B2.4.I.I.I Use tallies, checkmarks, charts, lists or objects to collect and organize data to answer and pose questions about themselves, others, or surroundings. E.g. I. "What is our favourite food or colour or sport?" E.g. 2. Answer and/or pose questions, and justify the answers, based on the organized data	Learners develop: Problem solving skills, Critical Thinking; Justification of Ideas; Collaborative learning; Personal Development and Leadership Attention to Precision
B2.4.I.2 Construct and interpret concrete graphs and pictographs	E.g. I Use one-to-many correspondence to create concrete graphs or pictographs to represent data collected (up to 3 categories of data)	Problem solving skills; Critical Thinking; Justification of Ideas; Collaborative learning; Personal Development and Leadership Attention to Precision

BASIC 3

BASIC 3
Strand I: NUMBER
Sub-Strand I: Counting, Representation, Cardinality \& Ordinality

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B3.I.I.I Count and estimate quantities from 0 to 10,000	B3.I.I.I.I Use number names and the counting sequence to count and estimate quantities up to 10,000 . E.g. I. Skip count forwards and backwards from 0 to 10,000 by $10 \mathrm{~s}, 50 \mathrm{~s}$ $100 \mathrm{~s}, 500 \mathrm{~s}$ and 1000 s starting at any point. Identify and correct errors or omissions in a skip counting sequence E.g. 2. Count to tell the number of objects in given collection of objects by selecting the most appropriate of three estimates for a given collection of objects and justify the choice. E.g. 3 Represent numbers or quantities to 1000 with written numerals E.g. 4 Write number words for given multiples of ten to 9999 and for multiples of 100 to 99990	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B3.I.I.I Count and estimate quantities from 0 to 10,000.CONT'D	B3.I.I.I. 2 Identify numbers in different positions around a given number in a number chart E.g. I. Display a number chart with numbers between 0 and 10,000 and have learners identify numbers in different positions around a given number. Put learners in convenient groups and give each group a number grid and have them identify numbers in different positions around a chosen number. For example, choose 34 and identify numbers above, below, to the right or to the left etc. B3.I.I.I. 3 Describe numbers and the relationship between numbers from 0 to $\mathbf{1 0 , 0 0 0}$ in equivalent ways using the place value concept E.g. I. Demonstrate a conceptual understanding of place value of whole numbers between 100 and 10,000 by: - explaining and showing - with bundles of hundreds, tens and ones - the meaning of each digit in a given 3-digit number (when the three digits are different, as well as when two or more of the digits are the same) and representing the number in a hundreds frame - explaining why the value of a digit depends upon its placement within a numeral.	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B3.I.I.I Count and estimate quantities from 0 to 10,000.CONT'D	- using other possible representations of place value which include manipulatives such as threaded 100 s , 10 s , and loose bottle caps; and multi-base ten material (units, flats and squares) E.g. 2 Ask pupils to model number quantities up to 10,000 using square grid paper or multi-base materials. For instance, with multibase block, a cube $=1$ unit; a rod $=10$; a flat $=100$ and a block = I000; learners model 327 with the appropriate materials. E.g. 3. Decompose numbers up to 1000 into $100 \mathrm{~s}, 10$ s, and Is expressions (e.g.: $5000=1000+1000+1000+1000+1000$ or $4036=4000+30$ +6 ; etc.) Hundreds frame E.g. 4. Explain why the value of a digit depends upon its placement within a numeral. E.g. 5. Read a given number up to 1000 by indicating the value of each digit (i.e., reading 435 as four hundred and thirty-five and not four three five.	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B3.I.I.I Count and estimate quantities from 0 to 10,000.CONT'D	B3.I.I.I. 4 Compare and order whole numbers up to 10,000 and represent comparisons using the symbols >, <, or $=$. E.g. I. Demonstrate an understanding of how place value determines the relative size of whole numbers (between 100 and 10,000) by: - describing the relative size of two numbers (i.e., saying whether one number is a little or a lot bigger or smaller than another and justifying the answer) - identifying which of two given numbers is bigger (or smaller), explaining why using place value and representing the relationship using the symbols< and >; - putting a small group of numbers in increasing or decreasing order and justifying the order using a hundreds frame, a number line or place value; - identifying the missing numbers or errors in a section of number line from 100 to 10,000 or in a hundreds chart and justifying the answer using place value - solving word problems that involve comparing quantities to 1000 (i.e., Agbo has 230 chickens. Dzifa has 460 . What can you say?)	Learners develop Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Attention to Precision

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B3.I.I.2 Develop an understanding of positive and negative numbers	B3.I.I.2.I Describe situations having opposite directions or values E.g. I. Invite pairs of learners to play the "opposite game" (i.e. a learner performs an action and the partner does the opposite whilst the rest of the class serve as referees) E.g. 2. Make a space down the centre of the classroom and mark with chalk cross and ask a pair to stand on the cross with their back facing. the learners then move in the opposite direction a straight line B3.I.I.2.2 Use real life contexts to deduce positive and negative number representations	Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Attention to Precision
	E.g. 3. Draw a large picture showing the sea, mountains above the sea and space below sea level. Provide pictures of items such as a fish, a whale, a boat, car, house, an octopus etc. Ask the learners where they would place each of the items on your picture. Encourage them to say "above the sea level" or "below the sea level". When all the items are stuck, discuss how high the plane might be and how low the octopus might be and so on. Introduce the "minus" sign to indicate under the sea level	

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B3.I.I. 3 Identify negative numbers up to - 10	B3.I.I.3.I Describe situations using positive and negative values E.g. I. Draw a number line on the floor or any convenient place. Ask a pair to stand on the cross (centre) with their back facing. The learners then move in the opposite direction a straight line on the number line. Have learners move on the opposite direction on the number line and name the numbers as shown: Learners also build their own number line to include - 10 A blank number line B4.I.I.3.2 Count forwards and backwards with positive and negative whole numbers through zero E.g. I. Display the number line, mention a number and ask learners to move/hop from the number to another number through zero.	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Attention to Precision

\begin{tabular}{|c|c|c|}
\hline CONTENT STANDARDS \& INDICATORS AND EXEMPLARS \& SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES \\
\hline \begin{tabular}{l}
B3.1.2.I \\
Develop and use standard strategies for adding and subtracting within 1000
\end{tabular} \& \begin{tabular}{l}
B3.I.2.I.I Use standard strategy or procedure to do addition or subtraction within 1000 \\
E.g. I. Explain the purpose of a symbol like a square or an underline in a given addition or subtraction mathematics sentences with one unknown (e.g.: 227
\[
+\square=609)
\] \\
E.g. 2. Create an addition or subtraction question with an unknown for a classmate to solve, and using either \(\square\) or \(\qquad\) to represent the unknown \\
E.g. 3. Solve an addition or subtraction question with one unknown, using a variety of strategies and explaining the strategy used. \\
E.g. 4. Use the methods of decomposition to find the sums and difference of numbers within 1000
\end{tabular} \& \begin{tabular}{l}
Learners develop: \\
Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision
\end{tabular} \\
\hline \begin{tabular}{l}
B3.1.2.2 \\
Demonstrate an understanding of the concept of "equality" and "not equal to" in addition and subtraction problems with sums up to 1000
\end{tabular} \& \begin{tabular}{l}
B3.I.2.2.I Use the concept of "equal to" and "not equal to" \\
E.g. I. Explain that " \(\neq\) " means "not the same as" or "not equal to" \\
learners construct two sets that are not equal, explaining why they are not equal and recording the relationship using the symbol \(\neq\) (e.g., \(\square\)
\(\square\)
\(\square\)

- Change two given sets, equal in size, to create sets that are not equal (e.g., change $\square \square \square=\square \square \square$ to $\square \square \square \square \neq \square \square$), explain the changes made and why

- learners determine whether two sides of a given number sentence are equal or not and using the appropriate symbol to represent the relationship (e.g., $160 \neq 80+50$)

 \&

Learners develop:

Problem Solving Skills; Critical

Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision
\end{tabular}

\hline
\end{tabular}

Sub-Strand 2: Number Operations (Addition, Subtraction, Multiplication and Division)

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B3.I.2.2 Demonstrate an understanding of the concept of "equality" and "not equal to" in addition and subtraction problems with sums up to 100 CONT'D	E.g. 3. Learners demonstrate an understanding of the relationship between addition and subtraction by describing a subtraction as an equivalent addition and vice versa; i.e. finding the missing addend. (For example, that subtract 40 28 is the same as finding the number that must be added to 28 to make 40). $40-28=\text { What? Means } 28+\text { What? }=40$ Or if given 40-28 = \qquad change question to $28+$ $=40$. The answer is 12 , so 40-28 = 12).	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision
B3.I.2.3 Develop and use strategies for mentally computing basic addition and subtraction facts within 100	B3.I.2.3.I Use strategies to mentally add and subtract whole numbers within 100 E.g. I Use strategies studied in BI and B 2 (counting up, counting down, making doubles, making doubles plus or minus I or 2 , making 10 s, rearranging order of additions to make friendlier combinations, converting a subtraction into an addition and solving the addition) to demonstrate mastery of basic addition facts to 18 (and related subtraction facts) E.g. 2 Make doubles when both numbers are close to doubles or when one number is close to the double of the other by: - decomposing one of the numbers to create doubles (e.g. when adding $25+26$, think $25+25+1$) or - shifting a quantity from one number to the other to create doubles (e.g., when adding $24+26$, think $25+25$, or when adding $69+$ 23 , think $70+22$) E.g. 3 Make 10 s when one number is close to 10 or to multiples of 10 by shifting a quantity from one number to the other to create a multiple of 10 (e.g. for example, instead of $28+47$, think $30+45$, which is the equivalent of moving 2 from 47 to 28 or think $25+50$, which is the equivalent of moving 3 from 28 to 45)	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative learning, Attention to Precision

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B3.1.2.3 Develop and use strategies for mentally computing basic addition and subtraction facts within 100 CONT'D	E.g. 3 Making $10 s$ when the 2 nd number is to $\mathbf{1 0}$ or to a multiple of 10 by compensation (i.e., adding something to the number, then adjusting the answer by adding the same amount to the answer e.g. for 48 - I9, subtract: 48-20 which is I8, then add I to that answer to get 19). E.g. 4 Subtracting by counting up in friendly jumps. Start at 2nd number and jump up by friendly jumps to get to the first number and add up all the friendly jumps made (e.g.,7l-36, start with 36 and make friendly jumps until you get to 71 , for example $36+10+10+$ $10+5$ gives 71 . The jumps made were $10+10+10+5$, or 35 places in total. So the difference between 7 I and 36 is 35)	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision
B3.1.2.4 Develop and apply personal and standard strategies for adding and subtracting within 1000	B3.I.2.4.I Use a variety of personal strategies for adding within 1000 E.g. I Use objects (groups of I00s, IOs and ones) or drawings to model addition and subtraction of I to 3 digit numbers (with answers to 1000) and record the process symbolically, with and without a 100s frame. B3.I.2.4.2 Use a variety of personal and standard strategies to solve different types of subtraction and addition equations and problems with missing numbers in all positions E.g. I. Splitting or partial sums, or adding 100s together first, then IOs together, then Is, and then adding those partial sums together (see example of $168+384$ to right)	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B3.I.2.3 Develop and use strategies for mentally computing basic addition and subtraction facts within 100 CONT'D	E.g. 4 Decomposing or partitioning the second number to create numbers that are easier to add and adding on in "friendly jumps" (e.g., when adding $36+35$, start with 36 , add 10 three times to get $66(36+10+10+10)$, then add on 5 to get 71 . The answer is 71 .) E.g. 5 Adding from left to right (adding 10 s first and then ones) or using the splitting/partial sums strategy (e.g., to add $52+34$, think $50+30$ and $2+4$ B3.I.2.3. Use strategies to mentally add and subtract whole numbers within 100 E.g. I Look for doubles, and then changing the subtraction question into an addition and solving it (e.g. for $24-12$, think $12+12=24$ so $24-12$ is 12) E.g. 2 Make doubles when the two numbers that are close together or close to doubles by: - Decomposing the second number to make doubles (e.g. when subtracting $48-25$, think $48-24-1$) or - Compensating to make doubles: adding something to the second number to make a double, then adjusting the answer by adding the same amount to the answer (e.g. for 48-23 think 48-24=24. Then add I to 24 to get 25 , which i E.g. 3 is the answer)	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B3.1.2.4 Develop and apply personal and standard strategies for adding and subtracting within 1000 CONT'D	Eg. 2. Adding on by friendly jumps strategy, where one of the numbers is decomposed into a friendlier number and added in "chunks" (for example, when adding $326+232$, start with326, add 100 two times to get $526(326+100+100)$, then add on 10 three times to get $556(526+10+10+10)$ and then add on 2 to get 558 . The answer is 558 . E.g. 3. Making 10 s or 100 s when adding a number that is close to a multiple of 10 or 100 by moving a quantity from one number to another, for example when adding $296+568$, move 4 from 568 to 296 to make 300 (see example to right) E.g. 4. Compensation strategy - adding more than is required to create an easier number to add - usually a multiple of 10 or 100 - and then subtracting that same amount from the answer (for example, when adding I26 + 39, add I to 39 to create the expression I26 +40 , which gives 166 , then subtract from the answer the I that was added; $166-I=165$, so the answer is 165) E.g. 5. Decomposing or splitting the second number into partial subtractions that are easier to subtract (e.g. when subtracting 127-38, decompose 38 and subtract in friendlier jumps - 127-20-10-8 or see examples in text boxes) E.g. 6. Starting at the second number and counting up in friendly jumps (e.g., when subtracting $127-18$, start at 18 and count up by 100 to get II8, then count up 9 to get 127...so the answer is 109) E.g. 7. Compensation strategy - Subtracting more than is required (to turn the $2^{\text {nd }}$ number into a friendlier number), then adding the extra amount to the answer (for example, when subtracting 547-296, subtract $547-300=247$, then add 4 to the answer to get 25I)	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision

ONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B3.1.2.4 Develop and apply personal and standard strategies for adding and subtracting within 1000 CONT'D	E.g. 8. Constant difference - Adding (or subtracting the same amount from each number to make one number "friendlier", knowing that it does not change the answer (e.g., instead of $158-47$, do $161-50$ which is III). B3.I.2.4.3 Develop and explain estimation strategies to estimate the solution for a given word problem involving addition or subtraction sums up to 1000 E.g. I. To estimate the sum of $430+56 \mathrm{I}$, use $400+500$. The sum must be close to 900 ; to estimate the different of 660 and 430 , use 600 and 400 or 700 and 400 . The difference must be close to 200 or 300 .) B3.I.2.4.4 Show an understanding of the property of commutativity E.g. I. Give addition problems and have learners interchange the position of the addends and solve. for example $236+453=$ and $453+236=$	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision
B3.1.2.5 Demonstrate an understanding of multiplication up to 5×5	B3.I.2.5.I Represent and explain multiplication using equal groupings Learners make formation of sets of equal object from a given quantity. For example with 12 straws Learners make groupings such as: 3 groups of $4 \Rightarrow 3 \times 4$ 4 groups of $3 \Rightarrow 4 \times 3$ 2 groups of $6 \Rightarrow 2 \times 6$	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision

			INDICATORS AND EXEMPLARS								SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B3.I.2.5 Demonstrate an understanding of multiplication up to 5×5 CONT'D	E.g. 4. Learners should also be encouraged to model multiplication on the number line E.g. 5. Draw a 6 by 6 -multiplication chart and use it as a game board to play the 3 -in-a-line game with a pair of dice or playing cards. Players take turns in throwing a pair of dice and mark (or cover) the product made in a throw with his/her marker (or counter). 3-in-a-line products Game Board E.g. 6. Learners find doubles of given numbers and skip count in 3,4 , and 5.	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B3.I.2.6 Demonstrate an understanding of division	B3.I.2.6.I Use concrete and pictorial representations to explain division as equal sharing or partitioning equally into given groups and finding how many are in each group E.g. I. Give a quantity of straws (e.g. 12) and invite 4 learners to share equally among themselves by picking one at a time in turns until all straws are finished and then asking each learner to count and tell the number of straws they received. B3.I.2.6.2 Use concrete and pictorial representations to explain division as repeated subtraction or determining the number of times given equal groups can be obtained in (i.e. goes into or can be subtracted from) a given number E.g. I Give a quantity of straws (e.g. I2) and have learners make equal groups formation of 3 straws in each group and then have learners count the number of equal groups formed. B3.I.2.6.3 Use concrete and pictorial representation to explain division as inverse of multiplication E.g. I Explain that division can be carried out as an inverse of multiplication by the following process: For example, to solve $12 \div 3$. Write: $12 \div 3=\quad \text { What? Which means } 3 \times \quad \text { What? }=12$ Learners use the multiplication chart to identify the number which multiplies 3 to obtain 12 Learners choose the number as the answer to the problem That is $12 \div 3=4$	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision

Sub-Strand 3: Fractions

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B3.I.3.I Develop an understanding of fractions using concrete and pictorial representations and write fractions in words and symbols	B3.I.3.I.I Understand a unit fraction by explaining the fraction $\frac{1}{f}$ as the quantity obtained by taking I part when a whole is partitioned into f equal parts and that a fraction $\frac{1}{f}$ is the quantity obtained by taking parts of the $\frac{1}{f}$ size E.g. I. Use several pictorial representations (or card cut outs) to introduce unit fractions like half, thirds, fifths, tenths, etc. and ask learners to identify the fractions $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, and E E.g.2. Introduce the fraction notation by explaining the fraction one-half as the quantity obtained by taking I part when a whole is partitioned into 2 equal parts and is represented by $\frac{1}{2}$; ask learners to write symbols for the fractions $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, and E E.g. 3. Ask learners to match pictorial representations of fractions to their symbols	Learners develop: Problem Solving skills; Critical Thinking; Justification of Ideas; Collaborative learning; Personal Development and Leadership Attention to Precision

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B3.I.3.I Develop an understanding of fractions using concrete and pictorial representations and write fractions in words and symbols CONT'D	E.g. 4. Use several pictorial representations (or card cut outs) to introduce multiples of unit fractions like thirds, fifths, tenths, etc., show the notations $\frac{2}{5}, \frac{3}{8}, \frac{4}{12}$, etc. and ask learners to draw and label fractions with their $\frac{2}{3}$ \square $\frac{4}{5}$ $\frac{5}{6}$ symbols. E.g. 5. Ask learners to colour given fractions in given shapes with equal portions or match fractions to shaded regions. B3.I.3.I.2 Understand, explain and demonstrate that fractions can be used to represent parts of a group of objects, point on a line, or distances on a number line [Read and write fractions using words and symbols. (E.g. one-half, two halves, thirds, fifths etc.)] E.g. I. Use concrete objects and pictorial representations to explain the fraction half as the quantity obtained by taking I part when a group of object is partitioned into two equal parts. E.g. 2. Ask learners to colour given fractions of given groups of object or match fractions to given groups of objects	Learners develop: Problem Solving Skills; Critical Thinking; Justification of Ideas; Collaborative Learning; Personal Development and Leadership Attention to Precision

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B3.I.3.I Develop an understanding of fractions using concrete and pictorial representations and write fractions in words and symbols CONT'D	 E.g. 3. Ask learners to cut given fractions from a given (e.g. 12 cm long) card, bar or stick. E.g. 6. Ask learners to locate the missing fractions on the number line.	Learners develop: Problem Solving Skills; Critical Thinking Abilities; Justification of Ideas; Collaborative Learning; Attention to Precision; Look for Patterns and Relationships

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B3.I.3.I Develop an understanding of fractions using concrete and pictorial representations and write fractions in words and symbols CONT'D	B3.I.3.I. 3 Compare and order unit fractions and fractions with like denominators by using concrete models, pictorial representations and number line. E.g. I. Use pictorial representations to compare pairs of fractions. Which is larger, $\frac{3}{8}$ and $\frac{1}{4}$? Arrange from smallest to largest $\frac{3}{6}, \frac{2}{3}$ and $\frac{5}{6}$ E.g. 2. Use fraction charts to compare pairs of fractions. Which is larger, $\frac{3}{8}$ and $\frac{1}{4}$? Arrange from smallest to largest $\frac{3}{6}, \frac{2}{3}$ and $\frac{5}{6}$	Learners develop: Problem Solving Skills; Critical Thinking Abilities; Justification of Ideas; Collaborative Learning; Attention to Precision; Look for Patterns and Relationships

Sub-Strand 4: Money

CONTENT STANDARDS		INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B3.I.4.I. Determine the value of coins and note in order to solve monetary transactions CONT'D E.g.	E.g. 2. S. Solve word problems involving money including $1,2,5,10,20,50$ cedi denominations	Problem Solving Skills; Critical Thinking Abilities; Justification of Ideas; Collaborative learning; Attention to	
Precision; Look for Patterns and			
Relationships			

Strand 2: ALGEBRA

Sub-strand I: Patterns and Relationship

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B3.2.I.I Recognise, create, extend, describe, and use patterns and rules to solve mathematical tasks	B3.2.I.I.I Demonstrate an understanding of increasing and decreasing patterns by extending the next two or three terms and identifying errors or missing elements E.g. I Identify the pattern rule used to create more complex increasing or decreasing pattern and extend the pattern for the next 2 or 3 terms e.g. - $3,6,9,12,15 \ldots$ - the rule is "add 3 or take 3 steps forward or - $30,27,24,21,18 \ldots$ - the rule is take 3 steps backwards or subtract 3) E.g. 2 Create a pattern for a given pattern rule (e.g., create a pattern for the rule "add 10 ") E.g. 3 Identify errors or missing elements in an increasing or decreasing pattern and justify the answer e.g. - $5,10,20,25,30 \ldots$ or - $45,40,35,30, \ldots, 20 \ldots$ E.g. 4 Locate and describe increasing or decreasing patterns in a 100 s chart (horizontal, vertical, diagonal patterns, etc.)	Learners develop: Problem Solving Skills; Critical Thinking Abilities; Justification of Ideas; Collaborative Learning; Attention to Precision; Look for Patterns and Relationships

Strand 3: Geometry and Measurement

Sub-Strand I: 2D \& 3D Shapes

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B3.3.I.I Analyse the relationships among and between 2-D shapes and 3-D objects according to a variety of attributes, including measurement	B3.3.I.I.I Describe 3D objects according to the shape of the faces, the number of edges and vertices. Sort regular and irregular polygons including triangles, quadrilaterals, pentagons, heptagons according to the number of sides E.g. I. Identify a variety of 3D shapes (cubes, spheres, cones, cylinders, pyramids and prisms) by: - identifying and counting the faces, edges and vertices: - describing the shape of the faces - constructing a skeleton of an object and describing the relationship between the skeleton and the object E.g. 2. Sort a collection of 3D objects according to the number/nature of faces, number of edges or number of vertices and describe sorting rule used E.g. 3. Identify regular and irregular 2D shapes (triangles, rhombus, rectangles, squares, pentagons, hexagons, octagons) having different dimensions and orientations by the number and nature of sides B3.3.I.I. 2 Draw and identify angles E.g. I. Sort 2D shapes into larger categories (e.g. rhombuses, rectangles and squares are all four-sided shapes.) according to a common, shared attribute and justify sorting; Draw examples of shapes that belong to and those that do not belong to given category E.g. 2. Measure the sides of a given polygon; Draw a polygon with given sides	Learners develop: Problem Solving Skills; Critical Thinking Abilities; Justification of Ideas; Collaborative learning; Attention to Precision; Look for Patterns and Relationships

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES		
B3.3.I.I Analyse the relationships among and between 2-D shapes and 3-D objects according to a variety of attributes, including measurement cont'd	B3.3.I.I.3 Use cut-out paper as a square corner to determine angles which are right angles and angles which are not right angles E.g. I. Identify polygons with square corners and those without square corners in and around their environment using cut-out papers B3.3.I.I.4 Use attributes to recognize rhombuses, parallelograms, trapezoids, rectangles, and squares as examples of quadrilaterals and draw examples of quadrilaterals that do not belong to any of these subcategories	Learners develop: Problem solving skills; Critical Thinking; Justification of Ideas; Collaborative learning; Personal Development and Leadership Attention to Precision		
E.g. I. Give cut-out shapes of different types of quadrilaterals and have learners				
examine their features. Learners discuss the characteristics and regroup them				
as rhombuses, parallelograms, trapezoids, rectangles, and squares and draw				
these quadrilaterals			\quad	
:---				

Sub-Strand 2: Position/ Transformation

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B3.3.2.I Demonstrate that the length of an object does not change with its placement or direction	B3.3.2.I.I Represent whole numbers as distances from any given location on a number line. E.g. I. Learners draw the number line, place rod A on different number points and count the number of unit intervals it covers in order to determine its length. Do same to rods B, C and D . A \square B C \square	Learners develop: Problem solving skills; Critical Thinking; Justification of Ideas; Collaborative learning; Attention to Precision

Sub-Strand 3: Measurement - Length, Mass, Time

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B3.3.3.I Demonstrate an understanding of a metre and centimetre (cm, m) units for measuring length	B3.3.3.I.I Model and describe the relationship between the units metre and centimetre E.g. I. Guide learners to study the calibration on the tape measure, metre rule and ruler E.g. 2. Identify objects that measure approximately I cm or Im; Estimating the length of given objects using these base objects as a reference point or point of comparison E.g. 3. Identify the appropriate standard unit (cm or m) for measuring the length of a given object E.g. 4. Estimate, then measure, using a ruler and recording the length and width of 2 D shapes or the length, width and height of given 3D objects E.g. 5. Draw a line segment of a given length with a ruler, grid paper etc. E.g. 6. Demonstrate the relationship between 100 cm and I m using concrete materials B3.3.3.I.2 Select and justify referents for metre and centimetre E.g. I. Make or show a list of items in the learners environment and have learners select and justify the choice of referents for measuring the length of the item mentioned	Learners develop: Problem Solving Skills; Critical Thinking Abilities; Justification of Ideas; Collaborative Learning; Attention to Precision; Look for Patterns and Relationships

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B3.3.3.I Demonstrate an understanding of a metre and centimetre (cm, m) units for measuring length	B3.3.3.I. 3 Estimate lengths, heights and perimeter of regular and irregular shapes using referents and verify by measuring, using a ruler or tape. E.g. I. Measure and record the perimeter of a given regular or irregular shape and explain the strategy used E.g. 2. Construct shapes for a given perimeter (cm or m); Construct more than one shape for the same given perimeter to demonstrate that many shapes are possible for a given perimeter E.g. 3. Estimate the perimeter of a given shape (cm, m) using personal reference points for length, then measure to assess the accuracy of the estimation	Learners develop: Problem solving skills; Critical Thinking Abilities; Justification of Ideas; Collaborative learning; Attention to Precision
B3.3.3.2 Demonstrate an understanding of kilogram and gram (Kg, g) unit for measuring mass and millitre and litre ($m \mathrm{l}, \mathrm{l}$) for measuring capacity	B3.3.3.2.I Model and describe the relationship between the units Kilogram and gram as well as litres and millilitres E.g. I. Identify objects that weigh approximately I g or I kilogram (or that hold I ml or I I). Estimating the mass, or capacity of given objects using these objects as a reference point or point of comparison E.g. 2. Identify the appropriate standard unit (g or $\mathrm{Kg} ; \mathrm{ml}$ or j ;) for measuring the mass or capacity of a given object E.g. 3. Estimate, then measure, using a scale (or graduated cylinder) and recording the mass (capacity) of common, everyday objects to the nearest g or kg (or ml or l). E.g. 4. Explain the relationship between 1000 g and I kg using a model or balance or between 1000 ml and I I using a graduated cylinder	Learners develop: Problem Solving Skills; Critical Thinking Abilities; Justification of Ideas; Collaborative Learning; Attention to Precision

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B3.3.3.3 Demonstrate an understanding of time taken by events in days, weeks and months	B3.3.3.2.2 Estimate masses and volumes using referents and verify by measuring, using a pan balance and weights, calibrated measuring cans. E.g. I. Bring to class a collection of different types of objects and have learners estimate their weights or volumes using direct or indirect comparisons and then later verify the estimate by using standard measuring tools	Learners develop: Problem Solving Skills; Critical Thinking Abilities; Justification of Ideas; Collaborative learning; Attention to Precision
B3.3.3.3 Demonstrate an understanding of time taken by events in days, weeks and months	B3.3.3.3.I Use arbitrary units to measure time taken to complete simple events. E.g. I. Identify personal referents for minutes or hours (i.e., 10 minutes is about the time it takes to...or 3 hours is about the time it takes to...) E.g. 2. Identify activities that can or cannot be accomplished in minutes, hours, days, months and years E.g. 3. Ask learners to time, using watches or clock and tell how much time (in minute and seconds) it would take to i. Walk round the school building; ii. Walk to the nearest house to the school; iii. Walk to the nearest toilet; etc. E.g. 4. Give learners the start and end times of events and ask to determine the duration of the event. E.g. 5. Complete the table	Learners develop: Problem Solving Skills; Critical Thinking Abilities; Justification of Ideas; Collaborative Learning; Attention to Precision

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B3.3.3.3 Demonstrate an understanding of time taken by events in days, weeks and months	B3.3.3.3.I Use arbitrary units to measure time taken to complete simple events E.g. I. Identifying personal referents for minutes or hours (i.e., 10 minutes is about the time it takes to...or 3 hours is about the time it takes to...) E.g. 2. Identifying activities that can or cannot be accomplished in minutes, hours, days, months and years E.g. 3. Ask learners to time, using watches or clock and tell how much time (in minute and seconds) it would take to iv. walk round the school building; v. walk to the nearest house to the school; vi. walk to the nearest toilet; etc. E.g. 4. Give learners the start and end times of events and ask to determine the duration of the event E.g. 5. Complete the table	Learners develop: Problem Solving Skills; Critical Thinking Abilities; Justification of Ideas; Collaborative Learning; Attention to Precision; Look for Patterns and Relationships

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B3.3.3.3 Demonstrate an understanding of time taken by events in days, weeks and months cont'd	B3.3.3.3.2 Read dates on the calendar, order dates of events and count days, weeks, months and years taken by given events E.g. 2. Ask learners to say the rhyme "Thirty-days has September" 30 days has September, April, June, and November. All the rest have 3I, Except for February alone, which has 28 days clear, and 29 in each leap year. E.g. 3. Use the calendar to do the following: - Identify or read the day of the week and the month of the year for a given calendar date. - Identify the day (or month) that comes before or after a given day (or month) - Name, order and count the days in a week and the months in a year, - Identify certain events and when they occur within the year (Christmas, Easter, local festivals, leap years, FIFA world cup etc.)	Learners develop: Problem solving skills; Critical Thinking Abilities; Justification of Ideas; Collaborative learning; Attention to Precision; Look for Patterns and Relationships

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B3.3.3.3 Demonstrate an understanding of time taken by events in days, weeks and months cont'd	B3.3.3.3.3 Relate the number of seconds to a minute, minutes to an hour and days to a month in a problem-solving context E.g. I. Develop understanding of the relationship between seconds, minutes, hours, days and months. Ask learners to say the rhyme on units of time (in the box) E.g. 2. Solving problems requiring an 60 seconds one minute; 60 minutes one hour; 24 hours one day; 7 days one week 52 weeks one year; 12 months one year understanding of number of seconds in a minute, the number of minutes in an hour and the number of days in a month	Learners develop: Problem Solving Skills; Critical Thinking Abilities; Justification of Ideas; Collaborative Learning; Attention to Precision; Look for Patterns and Relationships

Strand 4: Data

Sub-Strand I: Data Collection, Organisation, Presentation, Interpretation and Analysis

CONTENT STANDARDS	INDICATORS AND EXEMPLARS	SUBJECT SPECIFIC PRACTICES AND CORE COMPETENCIES
B3.4.I.I Collect first-hand data and organise it using tallies, checkmarks, charts, lists or line plots to answer and pose questions	B3.4.I.I.I Gather and record Data E.g. I. Use tallies, checkmarks, charts, lists or tables to collect and organize data to answer a question E.g. 2. Use tallies, checkmarks, charts, lists or tables to answer questions, and justify the answers, based on the organised data	Learners develop: Problem solving skills; Critical Thinking Abilities; Justification of Ideas; Collaborative Learning; Attention to Precision
B3.4.I. 2 Construct and interpret concrete graphs and pictographs to solve problems	B3.4.I.2.I Draw and interpret concrete graphs and pictographs to solve problems E.g. I. Identify common features of bar graphs that use one-to-many correspondence and use that understanding to create concrete graphs or pictographs, complete with title, labeled axes, key or legend, to represent data collected (up to 3 categories of data) E.g. 2. Using a one-to-many correspondence solve simple problems (how many altogether, comparing, or take apart problems) requiring interpretation of one-tomany bar graphs (up to 3 categories of data)	Learners develop: Problem solving skills; Critical Thinking Abilities; Justification of Ideas; Collaborative learning; Attention to Precision

MATHEMATICS SUBJECT PANEL MEMBERS AND REVIEWERS

SN	NAME	INSTITUTION
WRITING PANEL		
I	Prof. Eric Magnus Wilmot	University of Cape Coast
2	Dr. Prince H. Armah	University of Education, Winneba
3.	Dr. Forster Ntow	University of Cape Coast
4	Prof. Douglas D. Agyei	University of Cape Coast
5	Mr. Emmanuel Acquaye	Consultant, NEWAGE Strategies, Koforidua
6	Mr. Miracule Gavor	USAID Learning Numeracy Project
7	Mr. Stephen Nukporfe	Abetifi College of Education
8	Mr. Charles B. Ampofo	Kibi Presbyterian College of Education
9	Mr. Edward Dadson Mills	Methodist B Junior High School, Winneba
10	Ms. Anita Cordei Collison	Mathematics Desk Officer, NaCCA
II	Mr. Reginald G. Quartey	Mathematics Desk Officer, NaCCA
EXPERT REVIEWERS		
12	Prof. Damian Kofi Mereku	University of Education, Winneba
13	Prof. Olivier M. Pamen	African Institute of Mathematical Sciences (AIMS)
14	Prof. S.K. Amponsah	Kwame Nkrumah University of Science and Technology
CURRICULUM ADVISOR		
I5	Dr. Sam Awuku	OPM (Oxford Policy Management)

SUPERVISORS

I6	Felicia Boakye-Yiadom (Mrs)	NaCCA, Former Executive Secretary
$\mathbf{I 7}$	Dr. Prince H. Armah	NaCCA, Acting Executive Secretary
GRAPHIC DESIGNERS		
$\mathbf{I 8}$	Eugene Offei Tettey	NaCCA
$\mathbf{1 9}$	Frank Appoh	NaCCA

[^0]: ${ }^{1} \mathrm{~A}$ subtrahend is a number to be subtracted from another. $\ln 7-4=3,4$ is the subtrahend.

